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Fig. 1. Visualizations of an ensemble of volumetric data. The key idea is to employ a mapping from 3D space (as in the volume
renderings) to 1D space via space-filling curves, which then allows us to show boxplots of the data distributions. The ensemble
is generated by sampling from Gaussian distributions of data values in the nucleon data with varying extents of uncertainty. The
boxplots of the ensemble linearized with the Peano-Hilbert curve (bottom) do not preserve the coherency of 3D features—the small
torus structure of high intensity cannot be readily identified. In contrast, our data-driven space-filling curve method (top) preserves
features from 3D even in the 1D linearized representation as high intensities are more concentrated. This observation is confirmed by
brushing-and-linking—the torus could be covered by one brush and its surroundings with two brushes with our method (see the volume
rendering on the right and the yellow and purple regions in “Data-driven space-filling curve”), whereas multiple brushes are required by
the Peano-Hilbert curve (yellow and purple regions in “Peano-Hilbert curve”).

Abstract—We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data
elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing
methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that
describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data
via quadtrees and octrees. Our method is useful in many areas of visualization, including multivariate or comparative visualization,
ensemble visualization of 2D and 3D data on regular grids, or multiscale visual analysis of particle simulations. The effectiveness of our
method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.

Index Terms—Space-filling curves, comparative visualization, ensemble visualization, multivariate visualization

1 INTRODUCTION

Space-filling curves (SFCs) linearize an n-D image through a one-
to-one mapping into one dimension. Such linearization is useful in
visualization as a tool for dimensionality reduction for 2D and 3D
datasets. In this paper, we propose a data-driven space-filling curve
method for data on regular or multiscale grids. Our main goal is to
preserve spatial coherency (i.e., locality) and data coherency (i.e., data
features) at the same time. We construct a faithful representation of
the original 3D or 2D data after linearization. The method is intended
for easy feature identification in the 1D visualization of space-filling
curves—as line-plots—and facilitates subsequent user interactions, e.g.,
brushing-and-linking in comparative visualizations.

An important factor for choosing an appropriate space-filling curve
is how well the locality of a dataset is preserved. Among typical space-
filling curves, the Peano-Morton curve does not effectively preserve
the locality, whereas the Peano-Hilbert curve [10] is considered to
have better locality. Therefore, the Peano-Hilbert curve is popular in
visualization. However, these space-filling curves ignore the content of
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a dataset.
This issue is illustrated in Fig. 1. It shows the visualization of an

ensemble of a nucleon volumetric dataset generated by sampling from
Gaussian distributions with varying extents of uncertainty: the vol-
ume rendering generated with a blue-white-red color map is shown
in Fig. 1 (left). Boxplots along the Peano-Hilbert curve are shown
in Fig. 1 (central bottom), where the feature coherency in 3D is not
preserved—the small torus structure of high intensity cannot be iden-
tified. In fact, the torus is split into distant pieces in the 1D space
and multiple brushes are required to select the feature (yellow areas
in the “Peano-Hilbert curve” of Fig. 1). By contrast, with our method
(Fig. 1 (central top)), the torus can be identified as a feature spanning a
much smaller range in 1D, and can be selected with a single brush (as
seen in the yellow region) thanks to better preservation of features in
the spatial domain. With brushing-and-linking, the same regions are
highlighted in yellow in 3D (Fig. 1 (right)) using linearizations with our
method and the Peano-Hilbert curve. The better feature preservation of
our method is also demonstrated with the purple brushes.

Our main contribution is a data-driven space-filling curve approach
that comprises two variants of techniques: one for 2D and 3D regular
grids, and another for 2D and 3D multiscale data. For regular grids, our
method generates Hamiltonian cycles by replacing a minimum spanning
tree using an objective function that combines locality and position
terms; for multiscale data—quadtrees and octrees—our method finds
adaptive Hamiltonian paths across data scales in a greedy fashion. To
enable the calculation of Hamiltonian paths for multiscale data, we
make a second contribution: a simple and efficient technique that finds
a Hamiltonian path given only the entry and exit edges (2D) and faces
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(3D) of bounding rectangles/boxes of (all vertices of) grid graphs (e.g.,
north, east, south, west of the bounding rectangle of a 2D grid graph).
We evaluate our method for each data type by comparing it to the Peano-
Hilbert curve and scanline ordering on synthetic and real-world datasets.
The effectiveness of our overall method is demonstrated through typical
examples of 2D and 3D multivariate and ensemble data on regular grids
and multiscale. The source code of our method is available online1.

2 RELATED WORK

Space-filling curves [24], discovered by Peano [19], are traditional
topics in mathematics but now have various applications across different
areas in computer science. Well-known space-filling curves include the
Peano curve [19], the Gray code ordering [8], and the Peano-Hilbert
curve [10]. These methods consider only spatial discretization on
regular grids. Adaptively refined space-filling curves are available
for multiscale data structures, specifically, quadtrees and octrees, for
dynamic load balancing for high-performance computing [4]. However,
these methods use static configurations that are independent of the
content of the data and relate only to the size of the data.

The context-based space-filling curve [5] is one of the few examples
of a data-dependent curve. It targets to improve autocorrelation in
2D image and video encoding. There, a “dual graph” (we use this
redefinition by Dafner et al. [5] throughout our paper) is generated from
the input image and then a minimum spanning tree of the graph is found,
where weights are determined by an objective function. Finally, the
space-filling curve is constructed by replacing the minimum spanning
tree with a Hamiltonian path from a Hamiltonian cycle. However,
this method is limited to 2D data and does not support multiscale
data, making it unsuitable for many visualization applications. Unlike
this method, our data-driven space-filling curves support 3D volume
data and multiscale data of 2D and 3D, which are not possible with
the context-based space-filling curves [5]. In addition, our method
introduces a new objective function that achieves both feature and
locality coherency, making it more flexible than the context-based
method. Another example is an approximation method of the space-
filling curve with a data-driven metric [26]. However, only simple 2D
examples with distributed points are demonstrated and it is unclear how
the method could be extended to more complex data such as images and
volumes. A random space-filling curve method [13] based on the “cover
and merge” strategy is not data-driven but inspires the computational
framework of the context-based space-filling curve [5] as well as our
regular grid techniques.

Space-filling curves are useful for many visualization purposes. They
facilitate comparative visualizations due to locality preservation, i.e.,
points that are close on the space-filling curve are close in the original
2D/3D space (not necessarily the other way around). Space-filling
curves are used in ensemble visualization of 3D volumetric data [6, 28].
Peano-Hilbert curves are calculated for 3D ensemble data of multiple
levels-of-details, and the linearized results are visualized as interactive
enhanced line charts [6] making comparisons of 3D members possi-
ble. Similarly, a nonlinear compression method is available for the
linearized 3D ensemble calculated using Peano-Hilbert curves [28].
Hilbert attention maps [16] use Peano-Hilbert curves to visualize time-
varying eye-tracking data sampled on 2D regular grids as a static image,
allowing features of interest that span a small neighborhood to be
traced easily in the attention maps. For all methods above, brushing-
and-linking is used as the major exploration approach that relates the
1D linearization and the original data. Since our technique improves
space-filling curves implementations for visualization, all of these visu-
alization applications could potentially benefit from our method.

Hamiltonian paths and cycles form the computational basis of our
method. A Hamiltonian path/cycle is a path/cycle that visits each
node in a graph exactly once, and a Hamiltonian cycle can be easily
converted to a Hamiltonian path by a single cut on the cycle. The
computation of the general Hamiltonian path problem is NP-hard [1].
For restricted scenarios, however, more efficient solutions are possible.
The existence/nonexistence of a Hamiltonian path is proven for 2D

1https://github.com/zhou-l/DataDrivenSpaceFillCurve.git

grid graphs [11]; for 3D graphs of even-numbered nodes along each
dimension, a Hamiltonian path can be generated from a Hamiltonian cy-
cle [2]. However, these methods require specified entry and exit nodes,
which is infeasible for data-driven space-filling curves for multiscale
data. This is because if a path leaves a block of finer nodes and enters
to a block of coarser nodes, we only know the exiting face of the block
of finer nodes and the entering face of the block of coarser nodes. We
propose a more flexible Hamiltonian path generation method—for both
2D and 3D regular grids, given only edges/faces of entry and exit of a
bounding rectangle/box—as a building block for our method.

Ensemble visualization, an active and challenging visualization
topic [18], is one of the target applications of our technique. Besides
the aforementioned methods using space-filling curves [6, 28], there
are alternative techniques that use depth-based statistics [9, 14, 21, 29],
scatterplots and parallel coordinates [23], trend graphs and parallel
coordinates [17], and a flexible linked-view system with a configurable
collection of statistical representations [20]. Depth-based statistics is
a fundamental building block for ensemble visualization. The com-
putation and visualization of depth-based statistics is available for 1D
functions [27], 2D surfaces [9], 2D contours [29], 3D contours [21],
and 2D and 3D curves [14]. In our paper, we employ a 3D extension of
the surface boxplot [9] together with our data-driven curves to visualize
ensemble datasets.

3 PROBLEM FORMULATION

To support regular grids data and multiscale data with a unified repre-
sentation, we model the input data in 2D and 3D as a graph:

G = (V,E,L) ,

where vertices V are nodes/vertices of the grid, edges E connect neigh-
boring vertices (typically 4-neighbor and 6-neighbor for 2D and 3D
data, respectively), and L is the level of the scale of the vertex. Our
formulation facilitates a flexible multiscale representation with the
per-vertex scale L, as shown in Fig. 2.

V

G

EV

G

L = 3

L = 2

L = 1

E

quadtree

Pmin

Fig. 2. A 2D multiscale graph G = (V,E,L) on a quadtree with a Hamilto-
nian path Pmin.

Regular grids are a special case of G where the level is constant
(L = 1) for all vertices and the graph becomes a grid graph (Fig. 3).
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Fig. 3. (Left) A 2D graph on a regular grid G= (V,E,1) with corresponding
data values (black = 0, red = 1), and its associated circuit graph Gc (right)
of circuits C. Adjacent circuits of Ci are drawn in light blue. The edge
weights of data values between circuits Ci and C j are shown on the right.

Typical space-filling curves [10,19,24] focus on the geometry of the
curves, i.e., the geometry of V and E, which concerns only the preser-
vation of locality but not data features as the curves are ignorant of the
underlying data s(V ). Our goal is to generate space-filling curves that
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Fig. 4. Intermediate steps of the framework of [5] on 2D regular grids. The dual graph G′c (a) of circuits graph Gc is a directed graph with our new
weights (labeled on edges). Then, the minimum spanning tree (b) is found on the dual graph. Next, the Hamiltonian cycle is generated by merging
circuits using the minimum spanning tree (c). Finally, (d) the Hamiltonian cycle is converted into a Hamiltonian path by making a cut anywhere on the
cycle (shown as X).

preserve both locality and data features. This requires the scan order to
be updated according to the data. We focus on data-driven space-filling
curves that traverse through connected nodes within the graph G. Coun-
terexamples (curves that jump between unconnected nodes) are known
to have poor locality coherency, e.g., the scanline and the Peano-Morton
curve. In our case, the space-filling curve problem is equivalent to
a Hamiltonian path problem [11] with coherency preservation, which
allows us to formulate the generation of data-driven space-filling curves
as an optimization problem of Hamiltonian paths with an objective
function that takes measures of both locality preservation and data-
feature preservation into account. Finding the minimum total weight of
all possible Hamiltonian paths is hard on regular grids [5] and also on
multiscale grids.

We denote a Hamiltonian path P through all vertices V as a sequence:

P = (v1,v2, . . . ,vn) ,

where vi ∈ V is adjacent to vi+1 for 1 ≤ i < n. We aim to find a path
Pmin that minimizes an objective function f (P):

Pmin = argmin
P

f (P) .

The objective function is formulated to be the sum of weights W that is
comprised of a feature preservation term N that concerns data values
s(v) of vertex v, and a locality preservation term R:

f (P) =
n−1

∑
i=1

W (vi,vi+1) , (1)

W (vi,vi+1) = (1−α)N(s(vi),s(vi+1))+αR(vi,vi+1) ,

where α ∈ [0,1] is a user-set blend factor. Our locality preservation
term is a simplified, first-order locality measure. The true locality
measure of space-filling curves is multiscale, and, therefore, much
more complicated. However, our simplified model still yields better
positional coherency compared to the scanline and the context-based
method, as shown in Section 6.

Solving the minimization problem is infeasible except for extremely
small datasets, and, therefore, we find an approximate optimum of the
objective function. For regular grids, the optimum of f (P) is approxi-
mated by adopting the strategy used by the context-based method [5]
but with our new objective function and an extension to 3D. Steps
involved in the framework of regular grids are illustrated in Fig. 4.

In Section 4, we briefly review the setup of the framework of the
regular grid and elaborate on our new objective function and its impact.
The rationale and details of this framework can be found elsewhere [5].
For multiscale data, we propose approximately minimizing the objec-
tive function f (P) using a top-down and recursive greedy algorithm,
which is explained in Section 5.

4 SPACE-FILLING CURVE GENERATION FOR REGULAR
GRIDS

The steps for computing data-driven space-filling curves on regular
grids are described in Algorithm 1. Our new contributions are a new
objective function as explained in Section 4.1 and the extension to 3D
detailed in Section 4.2.

We briefly review the computational framework [5] using a 2D
example as illustrated in Fig. 4. For a regular grid G with an even

number of vertices in each dimension, we first convert it to a graph Gc
of small circuits C (Fig. 3), and then compute the dual graph G′c (refer
to the redefinition in the context-based method [5]) of Gc (Fig. 4 (a)).
With the dual graph of small circuits, we are able to find Pmin by
constructing the minimum spanning tree of G′c. The width and height
of G′c are wd and hd respectively; each node of G′c corresponds to
a circuit Ck for k ∈ {1, . . . ,wd × hd} of 2×2 vertices. The task of
evaluating the weight between any vertex v j adjacent to vertex vi in P is
now transformed to evaluating the weight on circuits W (Ci,C j), where
Ci and C j are adjacent, and the dual of Ci is already in the minimum
spanning tree (Fig. 3 (right)). A minimum spanning tree is the tree
that minimizes the sum of weights among all possible trees [25], i.e., it
guarantees to find W (Ci,Ci+1) as the minimum among all W (Ci,C j) in
each step. The minimum spanning tree is built by joining edges of G′c
using Prim’s algorithm (Fig. 4 (b)). Next, the minimum spanning tree
is converted to a Hamiltonian cycle by merging the circuits according
to the minimum spanning tree with the cover-and-merge strategy [13]
(Fig. 4 (c)). Finally, a Hamiltonian path Pmin is created by making a
single cut anywhere in the Hamiltonian cycle [5] (Fig. 4 (d)).

Algorithm 1 Data-Driven SFC for Regular Grids
1: procedure DDSFCREGGRID(G)
2: G′c← buildSmallCircsDualGraph(G) . G—2D/3D grid

graph, G′c—dual graph of small circuits graph of G
3: W ← calculateDualGraphWeights(G′c) . W—weights on G′c
4: MST← findMinSpanTree(G′c,W ) . MST—minimum

spanning tree
5: Pmin← mergeHamCycleAndCut(MST, vs) . vs—entry

vertex, Pmin—data-driven SFC
6: return Pmin

4.1 Objective Function
In our new objective function, the definition of weights of circuits on
regular grids by adding the circuit C j to the minimum spanning tree
reads:

W (Ci,C j) = (1−α)N(Ci,C j)+αR(Ci,C j) , α ∈ [0,1] , (2)

where Ci and C j are adjacent circuits, and the dual of Ci is already in
the minimum spanning tree.

For value coherency, we reuse the definition of value weights of
circuits of the context-based method [5]. The value weight that grows
the minimum spanning tree with C j reads:

N(Ci,C j) = |u1|+ |u2|+ |w1|+ |w2|+ |c|− |b|− |a| , (3)

SCj
SCi

CjCi

Fig. 5. G′c is partitioned (the blue dash-dot line) into blocks denoted by
their centers (e.g., SCi and SC j ) to accommodate the new positional term
of the objective function.
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Fig. 6. Comparison of linearization methods applied to a slice of the nucleon dataset (a). Our new data-driven space-filling curve is compared to
previous methods: the context-based space-filling curve, the Peano-Hilbert curve, and scanline ordering. The spatial layout of the respective curves is
shown in (b), and the linearization of the data values in (c). The spatial layout (b) is colored by the traversal order of curves (the horizontal axis of (c))
with the parula colormap (right of (b) Ours). Autocorrelations of value (d) and radial distance (e) quantify data coherency and locality preservation,
respectively. The plots show that our approach provides the best compromise between the two conflicting goals. Note that the autocorrelations of
data values of our method and the context-based method are largely overlapping.
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Fig. 7. The effect of different α (left–right: 0, 0.01, 0.03, 0.1, 0.3, and 1.0) on the scan order of our space-filling curves for the nucleon slice data (left).
The order is color-coded using the same color map as in Fig. 6.

where u1, u2, w1, and w2 belong to edges along the growing direction
of the minimum spanning tree, whereas a, b, and c belong to faces
across the growing direction. All values above are differences of data
values s(v) of vertices along corresponding edges in the grid graph as
defined in Fig. 3 (right).

To measure the positional coherency, we first partition the dual graph
into blocks with width wb and height hb, and denote the block center
of circuit Ck as SCk , as shown in Fig. 5. Then, we derive our positional
coherency term that measures the distance of the 2D position of the
circuit to the block center. The positional term is defined as follows:

R(Ci,C j) = Rpos(C j) = ||(C j.x,C j.y)− (SC j .x,SC j .y)|| , (4)

where Rpos(C j) measures the positional difference as the spatial dis-
tance between C j and the center of the block SC j . Since an edge weight
is required for finding the minimum spanning tree, we assign Rpos(C j)
to the edge Ci–C j in the dual graph to facilitate a unified weight defini-
tion with the value term.

A comparison of our data-driven curve for 2D regular grids and
other linearization techniques is shown in Fig. 6. It can be seen that
our method (Fig. 6 (Ours)) yields coherent results and correctly reveals
the two peaks as coherent and neighboring features. The context-based
space-filling curve (Fig. 6 (Context-based)) also reveals such struc-
tures but its spatial layout is not localized (Fig. 6 (b, Context-based)),
which is confirmed by a similar autocorrelation of value (Fig. 6(d))
and a inferior autocorrelation of radial distance (Fig. 6(e)) compared
to our new method). This indicates that our new method yields more
coherent results than the context-based method. The scanline order
(Fig. 6 (Scanline)) generates a cluttered line chart that goes up and
down and it is not possible to see the data content; the Peano-Hilbert

curve (Fig. 6 (Peano-Hilbert)) fails to show the two bright regions as
neighboring features, and the concentrated overall structure is shown
along the whole span of the line chart.

In our method, the blend factor α allows the user to flexibly change
the importance of value coherency and positional coherency, which is
not possible in the context-based space-filling curve [5]. Fig. 7 shows
the effect of α on the traversal order of an image. The impact of α

on value coherency and positional coherency is data-dependent and
nonlinear. We empirically used an α value of 0.1 (except for Fig. 16,
where α = 0) as tests on datasets for evaluation (Section 6) show that
such a value yields a good balance between the positional coherency
and data-value coherency. We recommended using α = 0.1 as a default.
Fine-tuning using trial-and-error may be required for a specific dataset
to achieve desired properties.

4.2 3D Volumes

Because a data-driven or context-based space-filling curve technique for
3D data on regular grids is useful for visualization applications [6, 28],
we extend our data-driven space-filling curve to 3D regular grids. Fig. 8
shows a comparison of linearizations of a synthetic volume data—a
sphere with increasing data value from exterior to interior (Fig. 8 (d))—
using our data-driven method, the Peano-Hilbert curve, and scanline
ordering. It can be seen that our method (Fig. 8 (a)) best preserves the
value signature of the sphere as a concentrated continuous single peak
with least noise, which is not possible with the Peano-Hilbert curve
(Fig. 8 (b)) or the scanline (Fig. 8 (c)), the sphere is split into many
pieces make the feature unidentifiable.

We extend the computational framework of the aforementioned
2D method (Algorithm 1) to 3D. Here, Gc—the equivalent to the
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Fig. 8. Linearizations (top) of a synthetic volume data of a sphere
(left) with our data-driven curve, the Peano-Hilbert curve, and scanline
ordering. The scan orders of curves are shown in the bottom row.
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Fig. 9. The value weights of cubes on 3D regular grids (a). The cubes
need to be converted into cycles during merging. There exist (b) six cycle
configurations of a unit cube, and the cycles are merged with (c) two
association rules.

circuit graph in 2D—is now comprised of small unit cubes—of 2×2×2
voxels—instead of circuits. The weights in the objective function
have the same form as of Equation 2, but the two coherency terms are
modified accordingly for 3D:

N(Ci,C j) =
4

∑
r=1

(|ur|+ |wr|+ |cr|− |br|− |ar|) ,

R(Ci,C j) = Rpos(C j) ,

Rpos(C j) = ||(C j.x,C j.y,C j.z)− (SC j .x,SC j .y,SC j .z)|| . (5)

As an analogy to the 2D case, ur and wr are edges along the growing di-
rection, while ar, br, and cr are faces across the growing direction. The
value weights of cubes on 3D regular grids are illustrated in Fig. 9 (a).
Instead of four neighbors (top, down, left, right) in the 2D case, six
neighbors (with front and back as additional neighbors) are used in the
3D case when building the minimum spanning tree.

The fact that a 3D unit cube is no longer directly a cycle as in the
2D case makes the conversion from the minimum spanning tree to a
Hamiltonian cycle more complicated. There exist six possible cycle
configurations in a unit cube as shown in Fig. 9 (b).

After building the minimum spanning tree, we grow the Hamiltonian
cycle by traversing the tree and associating unit cycles with a random
configuration (from the six configurations) with association rules [2].
Two association rules for two neighboring unit cycles are adopted
(Fig. 9 (c)): if parallel neighboring edges exist, we break the parallel
edges and associate the four endpoints; if parallel edges do not exist, we
need to break the neighboring edges and associate all eight endpoints.

Our data-driven technique could be extended for n data attributes,
where multidimensional data values live in regular grids in a 2D or
3D spatial domain. The vertices in the graph now have vector-based
data values, and the weights of the objective function can be defined as
certain metrics of the vectors, e.g., L2-norm. Our current visualization
is based on the linearization of one data attribute for multidimensional
data, and one member (typically, the median) for ensemble datasets.

5 MULTISCALE DATA-DRIVEN SPACE-FILLING CURVES

Our data-driven curve for a multiscale data is equivalent to finding a
minimum Hamiltonian path that traverses every leaf node in a quadtree
or octree T . However, the aforementioned regular grid strategy is not
applicable to build a dual graph for multiscale graphs because they
often do not contain even-numbered vertices along each dimension
(Fig. 10 (a)), and, therefore, a Hamiltonian cycle does not exist. As a
result, we resort to an approximation strategy to the minimum Hamilto-
nian path on multiscale grids with top-down adaptive refinement.

Algorithm 2 Data-Driven SFC for Multiscale Data
1: procedure SFCMULTISCALE({I1, I2, · · · , ILc}, T ) . T: tree

structure (quadtree/octree)
2: Ptop← findTopLevelSFC(ILc) . computes Ptop—the top level

SFC (data-driven)
3: Pmin← [] . Pmin—SFC of the whole data
4: vlast← 0 . vlast—the last SFC node
5: for i in range(1, length(Ptop)) do
6: block← T (Ptop[i])) . retrieves the corresponding block of

the current SFC node from the tree
7: Pz← refine({I1, I2, · · · , ILc}, T , block, vlast) . Pz—SFC of

the current block computed by adaptive refinement (data-driven)
8: Pmin← [Pmin,Pz] . appends Pmin with Pz
9: vlast← Pmin[last] . records the last member of Pmin

10: return Pmin

The process of our mutliscale data-driven space-filling curve method
is summarized in Algorithm 2. Given a multiscale dataset on a quadtree
(Fig. 10 (a)) or octree whose nodes are of levels 1 ≤ L ≤ Lc, where
1 is for the finest level and Lc is for the coarsest level, we prepare
an image/volume pyramid of Lc levels {I1, I2, · · · , ILc} for subsequent
computations. First, the top-level space-filling curve Ptop of the coarsest
level ILc is found (Fig. 10 (b)). Based on the number of nodes in the
coarsest pyramid level, the path is calculated using either the regular-
grid-based data-driven curve method as described in Section 4 or the
general Hamiltonian path method as discussed in Section 5.1. Then,
we adaptively refine each element of the top-level curve Ptop (i.e., a
multiscale node in the corresponding quadtree/octree)—at each level, a
minimum Hamiltonian path is found with our flexible Hamiltonian path
method that improves the Hamiltonian path method on grid graphs [11,
15] (Fig. 10 (c)). Finally, the linearization is achieved: both the data
value and the scale of the vertex are recorded (Fig. 10 (d)).

The objective function is approximately minimized during the pro-
cess. The data value coherency term is minimized approximately with
the flexible Hamiltonian path generation for each level in a block, and
by finding the best entry node during adaptive refinement; the local-
ity term is implicitly minimized by the hierarchical block-by-block
advancing of the curve similar to the Peano-Hilbert curve.

In the rest of this section, we explain the flexible Hamiltonian path
generation method, and then, the adaptive refinement process; finally,
we discuss scenarios when the multiscale technique or the regular grids
technique should be used.

5.1 Flexible Hamiltonian Path for 2D and 3D Grid Graphs
Typical Hamiltonian path methods solve the problem, i.e., (G,vs,vt), on
a regular grid G with distinct, explicitly given entry and exit vertices vs
and vt . However, this is not appropriate for our method as the adjacent
vertices are of different scales. For example, as shown in Fig. 10,
the exit vertex of the top-level block 3 (Fig. 10 (b)) cannot be known
beforehand, but only the exit face of the block is known given the
top-level space-filling curve. Therefore, in our formulation, we rewrite
the Hamiltonian path problem as

(G,vs,Ft) , (6)

where Ft is the exit side/face of the bounding rectangle/box of G. The
task is then to calculate the minimum path from vs to a valid vertex on
Ft .
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Fig. 10. Steps to compute a data-driven space-filling curve for multiscale data.

We have to compute the minimum path among all possible paths
from entry point vs to all valid vertices on Ft . Here, the objective
function f (P) is simplified to describe only the data value coherency
of the sequence, and it is defined as the sum of gradient magnitude of
data values s(V ) along the path:

f (P) =
n−1

∑
i=1
||s(vi+1)− s(vi)|| . (7)

Therefore, a smoothly changing path is encouraged and a path that
fluctuates significantly is punished.

We can find (or show the nonexistence of) a Hamiltonian path
through given entry and exit vertices for small grids directly by us-
ing exhaustive search. A larger graph has to be partitioned into smaller
ones: in practice, the largest graph that can be solved directly is 8×4
for 2D or 4× 4× 2 for 3D on our test machines. The limitation of
the partitioning is that it may break coherent features in space, e.g.,
in Fig. 12, single disks/spheres are occasionally broken into different
blocks and become less coherent compared to being in the same block.
Therefore, we suggest as few partitions as possible if it is supported by
the hardware and computational time allows. The partition is based on
the relationship between the entry face and exit face of the bounding
box/rectangle of the graph.

Examples of our flexible Hamiltonian path technique are shown
in Fig. 11: a horizontal partitioning and a vertical partitioning of 2D
graphs are shown in Fig. 11 (a) and (b), respectively; exit faces Ft on
the left and top for 3D graphs are shown in (c) and (d). Since the

(a) (b)

(c) (d)

Fig. 11. Flexible Hamiltonian paths for 2D and 3D grid graphs. Exit sides
are on the (a) right and (b) left for these examples of 2D graphs. The
example 3D graph has exit faces on the (c) left and at the (d) top.

flexible Hamiltonian path method is the building block of our multiscale
space-filling curve techniques, exhaustive search is implemented in an
non-recursive fashion using stacks to improve efficiency.

5.2 Adaptive Refinement
The refinement method refine—as described in Algorithm 3—is the
core of the space-filling curve for multiscale data. If any of the nodes
within the block is not a leaf node, it has to be refined all the way down
to the finest level in a data-driven fashion. The key is to determine the
suitable entry node for blocks at different levels (the findBestEntry
function in Algorithm 3): we keep track of the last vertex vlast in the
Hamiltonian path and utilize it to find the matching entry node in the
next block, i.e., the node within the adjacent block to vlast that has the
minimum difference to its data value. The combination of this pro-
cess and the Hamiltonian path generation function linearizeHamPath
(Section 5.1) approximates the minimization.

Algorithm 3 Refinement of a Multiscale Block
1: procedure REFINE({I1, I2, · · · , ILc}, T , block, vlast)
2: vs ← findBestEntry(vlast) . finds the best entry vertex vs

(data-driven)
3: if needRefine(block) then
4: Pcurr← [] . Pcurr—SFC of the current multiscale block
5: PcurrTop← linearizeHamPath(Iblock, T , vs) . finds the

top-level SFC PcurrTop of the current data block Iblock (data-driven)
6: for i in range(1, length(PcurrTop)) do
7: ctopBlock← T(PcurrTop[i]) . ctopBlock: top-level

sub-block within the current block
8: if needRefine(ctopBlock) then
9: if i≥ 2 then

10: vlast← PcurrTop[i−1]
11: Pfiner← refine({I1, I2, · · · , ILc}, T , ctopBlock, vlast)

. recursively computes the SFC of ctopBlock
12: Pcurr← [Pcurr,Pfiner] . appends Pcurr with Pfiner
13: else
14: Pcurr← [Pcurr,PcurrTop[i]] . appends Pcurr with

PcurrTop[i]
15: else
16: Pcurr← linearizeHamPath(Iblock, block, vs). data-driven
17: return Pcurr

Fig. 12 (Quadtree) shows the linearization with our data-driven tech-
nique for quadtree on a synthetic image (Fig. 12 (Quadtree, first col-
umn)). The resulting multiscale linearizations and their reconstructed
linearizations are shown in the second column of Fig. 12 (row 1). Here,
“reconstructed” refers to generating the linearization back to the regular
grid using the visit order of the coordinates of multiscale nodes and
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Fig. 12. Data-driven space-filling curves for quadtree and octree. The input data are shown in the first column, the linearizations in the second
column, and the spatial configurations of the space-filling curves in the third column.

their scale information. It can be seen that our technique preserves
the value signatures of five disks—each as a peak—which is more
prominent in the reconstructed space-filling curve. Fig. 12 (row 1,
third column) shows the geometry of the space-filling curve over the
quadtree color mapped by the traversal order (from blue to yellow). An
octree data of five spheres is shown in Fig. 12 (Octree): the linearization
using our technique Fig. 12 (Octree, second column, top) preserves
the value pattern of five spheres, more evident in the reconstructed ver-
sion Fig. 12 (Octree, second column, bottom). The spatial configuration
of the space-filling curve is shown in Fig. 12 (Octree, third column),
with the color map showing the scan order.

6 EVALUATION

Data value Radial Euclidean distance

2D

(a) (b)

3D

(c) (d)

Fig. 13. Autocorrelations of data value (first column) and radial distance
(second column) for our 2D techniques (first row) and our 3D techniques
(second row). Note that larger autocorrelation means better coherency.

Our method is evaluated by numerical comparison of autocorrela-
tions of our techniques (α = 0.1 for regular grid techniques) to existing
linearization methods. Autocorrelation is the correlation of a signal and
a shifted copy of the signal; the measurement indicates the coherency of
a signal, and is suitable for measuring the effectiveness of space-filling
curves [5]. In our evaluation, autocorrelations of two measures are cal-
culated: 1) autocorrelation of linearized data values u(i) that measure

the data coherency of space-filling curves; 2) autocorrelation of radial
Euclidean distances of elements in the linearization t(i) that measures
the spatial coherency, i.e., locality, of the curves. The definitions of the
two measures are shown as follows:

u(i) = s(P(i)) , t(i) = ||[P(i).x,P(i).y,P(i).z]− [0,0,0]|| .

Note that the distance measure t(i) is applicable only to regular grids
and P(i).z = 0 for 2D cases.

We use benchmark datasets commonly employed in scientific vi-
sualization and average the autocorrelations of each dataset for each
linearization technique. Specifically, 11 datasets—typically, slices
of volume data (one slice each of downsampled volume datasets of
aneurysm, beetle, bonsai, MRI brain, engine, foot, fuel, hurricane Is-
abel, neghip, and nucleon—all from a public volume data library2; and
an image of 5 randomly placed disks)—are used in the evaluation of
2D methods, and 5 volumetric datasets (fuel, neghip, nucleon, heart
ischemia, and a procedural volume generated with a tangle function;
all downsampled to 323) are used for 3D. Autocorrelations are shown
in Fig. 13, where the horizontal axis is the lag (shift) of the signal, and
the vertical axis is the value of normalized autocorrelation.

Averaged autocorrelations of data values in 2D (Fig. 13 (a)) indicate
that our regular grid method (green) has almost the same feature co-
herency as the context-based curve (purple) as they are overlapping, and
both perform much better than the Peno-Hilbert curve (blue) and the
scanline (red); our data-driven method for quadtree (black) performs
better than the Peano-Hilbert curve and scanline. In terms of averaged
autocorrelations of radial distance (Fig. 13 (b)), the Peano-Hilbert curve
(blue) performs best and is followed by our data-driven method (green),
and then the context-based method (purple); the scanline method (red)
has much worse performances than other techniques.

For 3D data, the evaluation compares our regular grid-based data-
driven technique, our multiscale technique for octree, the Peano-Hilbert
curve, and the scanline. As shown in Fig. 13 (c), our regular-grid
method (green) tops other techniques for averaged autocorrelation of
data value, and our octree technique (black) follows, and then, the
Peano-Hilbert curve (blue), and the scanline (red). For autocorrelations
of radial distance (Fig. 13 (d)), our regular grid method is better than
the scanline but out-performed by the Peano-Hilbert curve.

The evaluation confirms that our data-driven technique balances the
data value coherency and locality coherency, and is more flexible than
existing techniques. The comparisons also suggest that our regular
grid techniques have better data value coherency performance than
our multiscale techniques—the former is preferred when high-quality

2http://schorsch.efi.fh-nuernberg.de/data/volume/
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Fig. 14. Visualization of an SPH simulation of dam break: (a) rendering of particles with brushed regions, (b) multivariate line charts generated using
our octree-based data-driven space-filling curve.

linearization is needed for volumetric data and computational time is
not a limiting factor.

Our multiscale techniques are most suitable for multiscale data by
nature, e.g., multiscale simulation of particles. An octree can be built
to have a few (even just one) particles in the finest level node so that
accurate data values of almost all particles could be preserved. However,
for regular grids, this is more difficult if not impossible. Either more
particles are averaged out or a very fine grid has to be built. In addition,
multiscale techniques are faster than regular grid techniques as fewer
nodes have to be visited in multiscale structures compared to regular
grids for the same input data.

In contrast, our regular grid techniques yield more coherent lin-
earization results than our multiscale curves. This is due to that the
multiscale curve uses the top-down approach to ensure a Hamiltonian
path exists, but it breaks coherent features in space on certain occasions
as demonstrated in Fig. 12 (Octree). The aforementioned numerical
comparison of coherency confirms that the regular grid techniques have
higher coherency than multiscale techniques.

Therefore, we recommend using the multiscale technique for in-
trinsically multiscale data, especially, point datasets, and for reducing
computation time. The regular grids techniques are recommended for
higher linearization quality for images and volumetric data on uniform
grids. Furthermore, preprocessing the input data with a segmenta-
tion could improve the coherency, and, potentially, the efficiency of
our method (for regular grids, fewer comparisons are needed when
neighbors are homogeneous).

7 VISUALIZATION, USER INTERACTION, AND IMPLEMENTA-
TION

Our method facilitates visualizations that use the horizontal axis for any
spatial configuration along the space-filling curve, freeing the vertical
space to visualize values aligned within the spatial configuration. For
multivariate data, each variable can be visualized as a line plot (Fig. 14),
whereas for ensemble data, functional boxplots are used (Fig. 1,15,16).
Here, we employ the surface boxplot [9] for 2D ensemble datasets; an
extension of the method [9] to 3D is applied to 3D ensemble datasets.
The conventional color scheme used for boxplots is adopted.

We have built an interactive visualization tool to support the explo-
ration of space-filling curve-based visualization of datasets. The tool
comprises three linked views: a line plot view that shows the linearized
data; a 3D renderer that renders volumetric data with direct volume
rendering, and particle datasets with polygon-based rendering; a 2D
renderer that shows the data slice. The line plot view is linked with 2D
and 3D renderers using the scan order of the space-filling curve that
records the pixel ID of the line plot and its associated pixels/voxels
in the original data. Brushing-and-linking allows us to brush regions
in the line plot view, highlighting them in the 2D and 3D renderings.
Interactive zooming and panning are supported in the line plot view so
that both the overall structure and details of the line visualizations can
be examined.

Our space-filling curve techniques were implemented using Matlab.

The visualization tool is built using C++, Qt, and OpenGL, and is
accelerated by the GPU. The QCustomPlot library [7] was used to aid
the implementation of the line plot view. Our method was tested on
a 2019 13-inch Macbook Pro with 2.3 GHz Intel i5 CPU, 8 GB main
memory, and an Intel Iris 655 integrated GPU. The data-driven space-
filling curve only needs to be computed once for a given dataset, and
the computation time depends on the number of vertices in the graph
representation of the dataset. Timings of generating data-driven space-
filling curves for examples of the paper are summarized in Table 1. Full
interactivity was achieved for the exploration of all examples.

Table 1. Computation time of data driven space-filling curves on example
datasets.

Dataset Size Time

Nucleon slice 64×64 pixels 12s
Nucleon 32×32×32 voxels 24s

Brain atlas 176×208 pixels 3m39s
SPH 4000 particles/11796 octree nodes 43s

Myocardial ischemia 128×128×128 voxels 4h31m

8 EXAMPLES

We demonstrate the usefulness of our method with examples of mul-
tiscale multivariate particle data, ensemble of medical images on 2D
regular grids, and volumetric ensemble datasets on regular grids. Vi-
sualizations of ensemble datasets are based on linearizations of the
median members. The smooth particle hydrodynamics (SPH) dataset
shown in Fig. 14 is a timestep in a dam break simulation [22]; the
dataset contains particles with six attributes: density, pressure, speed,
and velocity in X , Y , and Z directions, respectively. The data is decom-
posed into an octree and linearized using our octree-based data-driven
curves. Data values of all attributes are linearized with the spatial layout
of the space-filling curve of the pressure attribute. We highlight regions
that are distinct from their neighborhood in the linearizations: low
values of density, high values of pressure, and high values of speed and
velocity. Here, the most prominent feature is the highest pressure region
(brushed in purple) with values over 50,000 as shown in the zoom-in.
The particles within the brushed regions can be seen in the 3D rendering
(Fig. 14 (a)). Our method yields a new visual debugging method that
shows clear, non-occluded quantities of each attribute embedded in a
spatial context. It could complement non-spatial multivariate plots [22]
for a more comprehensive visual debugging system.

Fig. 15 shows the visualization of a series of open-access MRI
slices [12]. The boxplot linearized with our method (Fig. 15 (b, center))
exhibits a more coherent feature that is more concentrated than in the
Peano-Hilbert curve linearization (Fig. 15 (b, bottom)). As shown in
the zoom-in of Fig. 15 (b, top), the outlier (the red curve) has wider
low-value regions (inside the gray boxes) than the band as shown in
the zoom-in. With brushing-and-linking, it is confirmed that the outlier
image (Fig. 15 (a, top)) has larger lateral ventricle area than the median
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Fig. 16. Ensemble visualizations of a heart ischemia simulation. The median member is volume-rendered in (a)—with 1D functional boxplots
linearized with (b) our data-driven space-filling curve (top) and a Peano-Hilbert curve (bottom). The ischemic region that has potential value greater
than 3 eV is selected in the boxplots and highlighted in (c).

image (Fig. 15 (a, bottom)) with the brush on the boxplot linearized
with our data-driven space-filling curve.

The myocardial ischemia dataset was generated by image-based,
experimentally derived cardiac electrical potential simulation [3]. We
use a subset of ensemble runs of the simulation and sample the data
on regular grids for our experiment. Here, we are interested in the
acute ischemic regions associated with mean potentials greater or equal
to 3 eV. As shown in Fig. 16 (b, top), the linearized 3D boxplot us-
ing data-driven technique yields more concentrated global features
than the linearization with the Peano-Hilbert curve (Fig. 16 (b, bot-
tom)). The region of interest (high potential regions) is bounded in a
small neighborhood with our method that could be selected with one
brush (Fig. 16 (b, top)), whereas the Peano-Hilbert curve yields a more
scattered result—a large number of brushes are required (Fig. 16 (b,
bottom)). The volume rendering (Fig. 16(a)) of the median ensemble
member shows that the region of interest is spatially continuous (white
in the rendering); the highlighted regions in space (Fig. 16 (c)) verify
that our method gives good coherency of the feature.

9 CONCLUSION AND FUTURE WORK

We have introduced data-driven space-filling curves for 2D and 3D
visualization. We have designed our methods to preserve coherency of
both data value and locality after the mapping from the spatial domain
to 1D. The methods are applicable for data on regular grids and in mul-
tiscale. We have modeled the problem as finding a Hamiltonian path
that approximates the minimum of an objective function that blends
a data value term and a locality term. Two variants of techniques are

available for regular grids and multiscale data (quadtrees and octrees).
The effectiveness of our method has been evaluated by comparing to
existing methods on various datasets with qualitative visual comparison
and quantitative comparisons of autocorrelations. We have confirmed
that existing methods cannot preserve both data features and locality
after linearization. Through multivariate and ensemble visualization ex-
amples with a wide range of real-world datasets, we have demonstrated
the usefulness of our data-driven space-filling curves.

In the future, we would like to extend our method for time-varying
data to understand the coherency in time. The positional term for regular
grids requires uniform blocks of a user-defined size, which should be
improved to be data-driven. The method could be used for multi-field
visualization such that different field data, e.g., scalar, vector, and tensor,
could be visualized in a linear layout for non-occluded comparisons and
investigation of correlations. Finally, we would also like to accelerate
our method with parallel computing to support larger datasets.
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