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Figure 1. Visualizations of the MRI brain dataset: (a) original, and (b) contrast enhanced by our method. The color map is
shown in (c). Note that all figures in the paper are supposed to be shown on the screen with around 30 cm for the maximum
extent and viewed at 80 cm away.

Abstract
In this paper, we propose an image-space contrast enhance-
ment method for color-encoded visualization. The contrast
of an image is enhanced through a perceptually-guided ap-
proach that interfaces with the user with a single and intu-
itive parameter of the virtual viewing distance. To this end,
we analyze a multiscale contrast model of the input image
and test the visibility of bandpass images of all scales at a
virtual viewing distance. By adapting weights of bandpass
images with a threshold spatial vision model, this image-
based method enhances contrast to compensate for contrast
loss caused by viewing the image at a certain distance. Rele-
vant features in the color image can be further emphasized
by the user using overcompensation. The method is effi-
cient and can be integrated into any visualization tool as it
is a generic image-based post-processing technique. Using
highly diverse datasets, we show the usefulness of perception
compensation across a wide range of typical visualizations.
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1 Introduction
A faithful visual representation relies on both appropriate
mapping of the data and the visual perception followed [18].
In this paper, we focus on the latter—visual perception in the
context of visualizations, and specifically, color encoding of
2D images. In particular, we study the faithfulness of contrast
representation caused by viewing distance. Our new method
has the main effect of enhancing contrast depending on
virtual viewing distance.

Color encoding is one of the main research topics in visual-
ization [2, 24, 25, 28]. Here, we refer to color as a combination
of achromatic and chromatic information. A large body of re-
search focuses on rules and factors affecting the effectiveness
of color coding. The perception of chromatic and achromatic
information, together with the effect of spatial frequency
and contrast has been studied [2, 25]. However, a control-
lable contrast enhancement method does not yet exist in the
context of visualization to the best of our knowledge.
Our method is inspired by studies in human visual per-

ception. The basis of our method is a threshold model of
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spatial vision, i.e., a model that predicts the visibility of an
object under different viewing conditions. The computation
of contrast and contrast sensitivity functions (CSF) is the
core of such a model. It is believed that the human visual
system contains visual pathways in a band-pass fashion, and
therefore, spatial vision can be appropriately modeled by
multiscale models [20, 26, 27]. A multiscale contrast model is
proposed by Peli [21] to address the contrast representation
of a complex image. There, a bandpass image pyramid is built
using either cosine-log filters of various scales or multiscale
Gaussian filters. We adopt this contrast representation [21]
and choose to use the cosine-log pyramid as it provides more
accurate spatial frequencies. CSFs have been measured in
physiological and psychophysical experiments [3, 16, 17, 27].
These measurements are successfully matched by computa-
tional models of CSFs. In particular, a computational model
for multiscale CSFs is proposed to predict visible differences
between two images by Daly [4]. This comprehensive model
considers variables affecting the contrast sensitivity, includ-
ing the illumination level, image size, stimuli orientation
and viewing distance. Our contrast enhancement method
combines the multiscale contrast model [21] with the com-
putational CSF [4]; a virtual viewing distance is used as
the single parameter to enhance contrast by adjusting band
weights so that all band-pass images become visible.

Mullen [16] studies visual sensitivity for sinusoidal grat-
ing patterns for monochromatic luminance gratings and
isoluminant chromatic gratings. The CSFs from experiments
show that better visual sensitivity is achieved for chromatic
channels for low spatial frequency stimuli, whereas the lu-
minance channel provides better sensitivity for stimuli with
higher spatial frequency. Therefore, we keep the chromatic
channels for low spatial frequencies and use the viewing
distance-adjusted achromatic image to provide more insights
into higher spatial frequencies.

An example of the MRI brain dataset is shown as the orig-
inal (Figure 1(a)), and enhanced by our method (Figure 8(b))
by our method. The enhanced result shows details inside the
brain tissues that look washed away in the original visual-
ization.
The contribution of our work is an efficient image-based

technique that enhances contrast using a single parameter
of virtual viewing distance. The method is inspired by the
perception literature, and it goes beyond just compensation
for contrast loss caused by viewing distance, but allows for
flexible overcompensation to emphasize relevant features in
the image.

One benefit of our approach is its generality: our method
can be used for a wide range of visualization examples, rang-
ing from volume visualization with transfer functions all the
way to 2D geographic information visualization, as demon-
strated in our examples. Another advantage is the simplicity
of the image-based post-processing that does not interfere
with previous steps in the visualization pipeline and can be

combined with any visualization system. Through our effi-
cient computational model, the image enhancement works
in interactive settings. Our method comes with easy and
intuitive controllability with the virtual viewing distance as
the only parameter.

2 Related Work
Utilizing color in computer-based visualization is an impor-
tant research topic [28]. Luminance and spatial frequency
aspects in visualizations with color mapping are in particular
related to our work. Specifically, luminance is more effective
for revealing high-spatial-frequency structures than chro-
matic channels [23, 25]. The spatial frequency of the data
is considered an important factor in color map design [2].
Color maps and high-frequency sinusoid gratings are com-
bined to design better perceptually uniform color maps that
have good luminance contrast across the whole range [9].

Luminance also plays an important role to improve details
in natural image processing. Tone mapping operators [5, 12,
22] are concerned with the compression of luminance range
while preserving perceived contrast. Unlike our proposed
method, these are image processing methods that target to
reproduce the perceived image of high dynamic range input
on low dynamic range devices, and cannot be tuned with a
viewing distance.

Computational perception models exist, albeit outside of
the field of visualization. Daly [4] predicts the visible dif-
ferences between two images by devising a computational
visual perception model. We make use of the CSF of [4] for
threshold contrast computation in our method. The HDR
visible difference predictor (HDR VDP) [13] is a percep-
tual model that compares a test high-dynamic-range image
against a reference high-dynamic-range image and predicts
the visibility, i.e., the visible differences between these im-
ages, and quality—the quality degradation with respect to the
reference image. However, these models concern on gener-
ating image metric for natural-scened photos or synthesized
images, while our method perceptually enhances potentially
abstract visualizations.
In the context of visualization, perceptual aspects have

been studied. Our paper is concerned with color percep-
tion in the context of its spatial embedding, and [7] is rele-
vant to our work but with a different goal in mind. There,
the visibility of features of different spatial frequencies at
different viewing distances of a display wall is studied. A
hybrid-image method that combines a near image containing
high-frequency information with a far image that has low-
frequency information is proposed to allow the user to per-
ceive coarse features well at distance and acquire fine details
when close to the display. We also analyze multiscale band-
limited images, however, we utilize them to compensate for
perception distortions and design perceptually oriented color
transformation. Moreover, rather than a display-wall setting
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Figure 2. The workflow of our contrast enhancement method based on virtual viewing distance.

where the user moves back and forth [7], we focus on a typ-
ical working space setting where the user sits in front of a
regular monitor at more or less a fixed distance.
In regard to compensation for perception effects, meth-

ods [14, 15] are proposed to compensate for the simultane-
ous contrast effect, which makes regions of the same color
look different. The compensation is realized by setting these
regions with different colors based on a customized color
appearance model. Unlike their work, our method does not
focus on the isolated simultaneous contrast effect but how
viewing distance affects the contrast on different spatial
scales. Furthermore, our method goes beyond compensation
but also supports overcompensation, which is important for
visualization.

Sufficient contrast is vital for gaining insights into the
underlying data in a visualization. In fact, user studies [19]
have shown that sharp boundaries created by binning con-
tinuous encodings help with the understanding of the data:
participants with binned encoding outperform those with
continuous encoding in terms of both the completion time
and accuracy. Therefore, it is natural to enhance contrast
for visualization images. Our method supports flexible in-
teractive overcompensation through a slider, allowing for
highlighting features of interest in an visualization. It is im-
portant to note that such overcompensation is not arbitrary
but perceptually based in our method.

3 Methods
The input of our method is a color image f (x ,y). An image
pyramid containing band-limited images ai (x ,y) is extracted
using cosine-log filters from the luminance image fY (x ,y)
of f (x ,y) . Then, average contrast c̄i of these band-limited
images is calculated. Viewing distance-based band weight as-
signment is achieved by testing the c̄i against a CSF S , which
is computed separately and independent of the dataset, for a
given virtual viewing distance set by the user. The luminance
difference image fL(x ,y) is then created by modulating the

Figure 3. Filter bank of 1-octave-wide cosine-log 1D filters
in the discrete spatial frequency domain. The dashed curve
indicates the sum of all filters.

band weights with ai (x ,y). The final visualization fV (x ,y)
is created by combining the luminance difference image
fL(x ,y) and the chromatic part fC (x ,y) of f (x ,y). The work-
flow of our method is illustrated in Figure 2. The remainder
of this section explains each module in our pipeline in detail.

3.1 Image Pyramid Generation
A multiscale model of spatial vision uses an image pyramid
generated from the input image. An image f (x ,y) can be
described in the frequency domain with polar coordinates
representation:

F (u,v) = F (r ,θ ) = L0(r ,θ ) +
l−1∑
i=1

Ai (r ,θ ) + Hl (r ,θ ) ,

≈ L0(r ,θ ) +
l−1∑
i=1

Ai (r ,θ ) , (1)

r =
√
(u2 +v2) ,θ = arctan

(v
u

)
,
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where u and v are the horizontal and vertical spatial fre-
quency coordinates in cycles/image [21] (the image is always
zero-padded to be squared with the side of power of 2), r and
θ are the polar spatial frequency coordinates, L0 and Hl are
low and high pass residuals respectively, l is the level of the
pyramid, and Ai are band-limited images in the frequency
domain. Since the high-frequency image contains little infor-
mation, it is safely discarded. The band-limited images are
created by filtering F (r ,θ ) by multiplying a bandpass filter
Gi (r ):

Ai (r ,θ ) = F (r ,θ )Gi (r ) . (2)

A popular choice of Gi is Gaussian filters with various
standard deviations. Gaussian filters are closely related to
scale space [11] and are widely used in imaging and com-
puter vision. The advantage is that they can be conveniently
transformed between the spatial domain and frequency do-
main. However, the Gaussian filters are asymmetrical in the
logarithmic frequency domain, and reconstruction of the
input image is nontrivial as filters do not sum to one [21].

Instead, we adapt the cosine-log filter bank [21] for image
pyramid generation. A cosine-log filter of 1-octave width,
i.e., the central spatial frequency is twice the frequency of
the lower cutoff frequency and half of the higher cutoff fre-
quency, centered at frequency 2i cycles/image is defined
as:

Gi (r ) = 0.5[1 + cos(π log2 r − πi)] . (3)

Figure 3 shows a 1D example of a cosine-log filter bank
comprised of 1-octave-wide cosine-log filters. The shapes
are symmetrical in the log spatial frequency axis and the
summation of filter responses equals to 1 as shown by the
red dash curve. In practice, these filters are defined in the
discrete frequency domain and the first few levels occupy
only a few pixels. The cosine functions are not accurately
represented there. As a result, we slightly change the filter
weights at these pixels to make sure that the summation of
all filters equal to one, as can be seen in Figure 3.
Bandpass images in the spatial domain ai (x ,y) are ob-

tained by applying inverse Fourier transform to Ai (u,v).
Figure 4 shows an image pyramid of 8 levels of the Hurri-
cane Isabel data [6]. It can be seen that the cosine-log filters
capture features of different spatial frequencies in the image.

3.2 Band Contrast Computation
The average contrast of each bandpass image ai (x ,y) is cal-
culated and later tested against threshold contrast given by
the CSF, which is discussed in the next section. We follow the
approach of [21] to obtain contrast images ci (x ,y) of each

Figure 4. Cosine-log image pyramid of the Hurricane Isabel
dataset. The input image is shown on the top row; images
in the pyramid are shown with increasing spatial frequency
from left to right, top to bottom (second and third rows). The
bandpass images are amplified for visualization purposes.

pyramid level:

ci (x ,y) =
ai (x ,y)

li (x ,y)
,

li (x ,y) = l0(x ,y) +
i−1∑
j=1

aj (x ,y) , (4)

where l0(x ,y) is the low pass residual image in the spatial
domain (L0(r ,θ ) in the polar coordinates frequency domain),
and li (x ,y) is the low pass image before the i-th level.

Unlike [21], where the per-pixel representation ci (x ,y) is
used as contrast, we compute an average contrast c̄i for level
i . We argue that, in visualization, using per-pixel contrast for
the subsequent band weight assignment is problematic for
two reasons: first, different amplitudes for pixels in the same
band could be confusing and break the mental picture of the
user; second, intuitive global luminance transformation for
all pixels in a band through user interaction is not possible.
Therefore, we calculate the average band contrast c̄i for band
i:

c̄i =

∑
ci (x,y),0

|ci (x ,y)|∑
ci (x,y),0

1 . (5)

Note that other contrast definitions can also be used in our
framework.
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Figure 5. Daly CSFs [4] with various illumination levels.

3.3 CSF and Threshold Contrast
The Daly CSF [4] is a comprehensive computational CSF
model including many parameters: S(r ,θ ,L, i2,d, e), where r
is the radial spatial frequency in cycle/degree (cpd), θ is the
orientation, L is the illumination level, i2 is the image size in
degrees, d is the distance for lens accommodation, and e is
eccentricity. We observe secondary effects on sensitivity for
parameters θ , d , and e , and it is sufficient for our method to
set constant values to these parameters. Figure 5 shows Daly
CSFs with various illumination levels L; there, the shape of
CSFs varies significantly for different L: higher illumination
levels offer better contrast sensitivity; CSF changes from
lowpass to bandpass with increasing illumination level. We
choose L = 100 cd m−2, which is a typical light condition
in an office setting, which is our target environment. As
explained in the previous section, we use averaged band
contrast, and therefore, L and i2 are fixed for a given input
image.

Given the CSF, the threshold contrast ct (r ), which is used
in the viewing distance-based band weight assignment, is
simply the inverse of sensitivity S :

ct (r ) =
1

S(r , 0, 100, i2, 0.7, 0) . (6)

3.4 Virtual Viewing Distance-Based Weight
Assignment

The perceptual spatial frequency rp (i) in cycles/degree of
bands are changed in our method through a virtual viewing
distance parameter dv . Cosine-log filter bank gives spatial
frequency rc (i) of each band in cycles/image, and can be
converted into the perceptual spatial frequency using Equa-
tion 7.

rp (i) = rc (i) · sdeд(I ) , i = 0, 1, ..., l − 1 ,

sdeд(I ) = 2 ·
180
π

arctan
(
0.5scm(I )

dv

)
, (7)

where l is the number of layers of the image pyramid, sdeд(I )
and scm(I ) are angle size in degree and physical size in cm
of the image I respectively. The physical size scm(I ) can be

calculated given the pixel resolution of the image, the pixel
resolution, and physical size of the monitor.
Figure 6 shows average band contrast of an image with

different viewing distances overlay with a threshold con-
trast curve ct (r ) generated by the Daly CSF. It can be seen
that with increasing virtual viewing distance, the spatial
frequency of bands is increased. Therefore, our method al-
lows for convenient spatial frequency modification of band-
limited images with a single virtual viewing distance param-
eter.

Figure 6. Average contrast of various viewing distance with
threshold contrast.

The threshold contrast curve predicts the visibility of fea-
tures of specific spatial frequency: a feature is not visible if its
contrast is below the curve, and it is visible if its contrast sits
on or above the curve. Band weight assignment is realized by
comparing the average band contrast at virtual perceptual
spatial frequencies against the threshold contrast curve. The
weight of a band is set to 0, if the band contrast is above the
curve; otherwise, the weight is set to be the multiplier that
“lifts" the band contrast up to the threshold contrast:

wi =

{
ct (rp (i))/c̄i − 1 , ct (rp (i)) > c̄i

0 , ct (r ) ≤ c̄i and r = rp (i) .
(8)

It can be seen in Figure 6 that with a short viewing distance,
more bands of low spatial frequencies need to be compen-
sated and higher weights are required for shorter viewing
distance, e.g., dv = 0.2m; with a long viewing distance, more
bands of high spatial frequencies need to be compensated
and higher weights are necessary for longer viewing distance
(dv = 2.2m); bands with medium spatial frequency typically
do not require compensation as threshold contrast is very
low for these frequencies, i.e., the contrast sensitivity is very
high. These findings successfully match our own experiences
in daily life.
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(a) Original (b) Enhanced

Figure 7. Volume rendering [1] of a supernova simulation dataset.

3.5 Combining Image Channels
The luminance difference image fL(x ,y) is generated as the
weighted sum of band limited images:

fL(x ,y) =
l−1∑

1
wi · ai (x ,y) . (9)

The final visualization fV (x ,y) is created by combining fL(x ,y)
with the colored image fC (x ,y). We replace the achromatic
channel L(fC (x ,y)) of fC (x ,y) by L(fC (x ,y)) + fL(x ,y), and
keep the chromatic channels of fC (x ,y) intact.
Care must be taken when band weights are high as the

modified achromatic image become saturated, i.e., fully white
or black. Since we would like to preserve the appearance
of fC (x ,y) as much as possible, we clamp the achromatic
channel L(fV (x ,y)) empirically by ±20% of the luminance of
fC (x ,y) to give optimal look of the visualization:

L(fV (x ,y)) =min(max(L(fV (x ,y)), 0.8L(fC (x ,y))),
1.2L(fC (x ,y))) .

In our current implementation, the combination operation
happens in the HSL color space, and the combined color is
transformed to the sRGB color space for display.

4 User Interaction and Implementation
The virtual viewing distance visualization method has only
one parameter—the virtual viewing distance dV . Therefore,
user interaction is simple and intuitive with our method as
dV can be easily controlled by a single slider.

The method was implemented in our visualization tool
written in C++ using Qt and OpenGL. Our tool supports
both 2D images and 3D volume datasets. The cosine-log
filter bank was computed only once for an image or a slice of
a volume dataset when its size was changed. Image pyramid
generation was computed using Fourier transform and was
aided by an efficient fast Fourier transform implementation
in OpenCV. Contrast image generation was also aided by
OpenCV. The computation of these steps took up to a few
seconds depending on the size of the image. The CSF was
computed once and stored in a lookup table, and weight
assignment involved only a few lookups and divisions. The
resulting band weights were passed to the GPU, and the
luminance image was combined with the color image in
a GLSL shader to give the final visualization. As a result,
interactivity was achieved with our implementation.

5 Examples
The usefulness of our perceptual enhancement is demon-
strated through various datasets of different types in this
section. Examples range from color mapping on 2D images
(slices) to show scalar fields of atmosphere simulation, brain
MRI imaging, 3D volume rendered image, all the way to 2D
geographic information visualization on maps.
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(a) Original (b) (c) Enhanced

Figure 8. Visualizations of the Hurricane Isabel dataset [6]: (a) the original visualization, (b) the color map, and (c) overcom-
pensated with a viewing distance of 200 cm.

5.1 Hurricane Isabel
The Hurricane Isabel simulation data shown in Figure 8,
is the pressure attribute of time step 29 that well demon-
strates the nature of atmosphere simulations which have
large-scale smooth, homogeneous structures with subtle yet
important vortex details. With a spectrum color map from
ColorBrewer1, we are able to roughly see the hurricane eye,
the spiral arms and the shore area in the input color mapped
result. Details outside the hurricane eye can be better seen
with a viewing distance of 80 cm with our method (Fig-
ure 8(b)). Applying our approach with a viewing distance
of 200 cm (Figure 8(c)), the contrast is further enhanced and
both the hurricane eye and spiral arm structures are more
visible.

5.2 MRI brain
Results of an MRI brain scan are shown in Figure 1. The
dataset is visualized with a slightly modified isoluminant
color map [8]. Without enhancement, the image gives a
washed away impression that the brain cannot be easily sep-
arated from the surrounding tissues (cyan), and the delicate
folded details are not recognizable without difficulty. With
a virtual viewing distance of 200 cm, the brain structure
with fine details become clearly noticeable, especially for the
cerebellum (Figure 1(b)).

1http://colorbrewer2.org

5.3 Volume Rendered Image
Figure 7 shows volume renderings of a supernova simula-
tion using an ambient scattering model [1]. The perceptual
enhanced result (Figure 7(b)) provides a less blurry visu-
alization compared to the original rendering (Figure 7(a)).
Specifically, boundaries of complex vortex structures become
more prominent with the enhanced contrast, making it easier
to gain insights into these structures.

5.4 GIS data
Figure 9 shows a visualization of movement behavior [10] on
a GIS city dataset. The visualization is designed to achieve a
focus-and-context effect: the focus is on dark red road net-
works and the region inside circle area, other regions are
given reduced contrast. The perceptual enhanced result (Fig-
ure 9(b)) improves the over-all contrast of the visualization
while preserving the focus-and-context feeling. Icons and
structures inside the circle of focus become more prominent.
Details outside the focus are enhanced so that more insights
can be gained easily; nevertheless, the enhancement is not
too strong to distract users from the focus region.

6 Conclusions
revise conclusion In this paper, we have introduced a con-
trast enhancement method based on virtual viewing distance
for data visualization with color images. The perceptually-
based enhancement is achieved by adjusting bands that are
extracted from the luminance channel of the input image
to become visible at a virtual viewing distance. Specifically,

http://colorbrewer2.org
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(a) Original (b) Enhanced

Figure 9. Visualization [10] of a GIS dataset.

the method is built on a multiscale image pyramid created
with cosine-log filters; weights of band-limited images are
assigned by testing average band contrast against a thresh-
old contrast curve derived from a CSF. Our technique has
only a single parameter—virtual viewing distance that can
be tuned easily by a slider. Interactivity is achieved with our
implementation. The proposed method can be integrated
into any visualization pipeline as image post-processing. A
wide range of datasets that have representative image fea-
tures is shown as examples to demonstrate the usefulness
of our method. Our viewing distance visualization method
is a potential technique that benefits any visualization with
effective perceptual enhancement.
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