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Perceptually Guided Contrast Enhancement Based on Viewing Distance
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Abstract

We propose an image-space contrast enhancement method for color-encoded visualization. The contrast of an image is enhanced
through a perceptually guided approach that interfaces with the user with a single and intuitive parameter of the virtual viewing
distance. To this end, we analyze a multiscale contrast model of the input image and test the visibility of bandpass images of
all scales at a virtual viewing distance. By adapting weights of bandpass images with a threshold model of spatial vision, this
image-based method enhances contrast to compensate for contrast loss caused by viewing the image at a certain distance. Relevant
features in the color image can be further emphasized by the user using overcompensation. The weights can be assigned with
a simple band-based approach, or with an efficient pixel-based approach that reduces ringing artifacts. The method is efficient
and can be integrated into any visualization tool as it is a generic image-based post-processing technique. Using highly diverse
datasets, we show the usefulness of perception compensation across a wide range of typical visualizations.
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1. Introduction

A faithful visual representation relies on both appro-
priate mapping of the data and the visual perception fol-
lowed [1]. In this paper, we focus on the latter—visual
perception in the context of visualizations, and specifically,
color encoding of 2D images. In particular, we study the
faithfulness of contrast representation impacted by viewing
distance. Our new method has the main effect of enhanc-
ing contrast depending on virtual viewing distance. This
paper is an extended version of our previous method [2]
with reuse of materials from there. In this work, we ex-
tend the method framework with a new per-pixel contrast
enhancement method.

Color encoding is one of the main research topics in vi-
sualization [3, 4, 5, 6]. Here, we refer to color as a combi-
nation of achromatic and chromatic information. A large
body of research focuses on rules and factors affecting the
effectiveness of color coding. The perception of chromatic
and achromatic information, together with the effect of
spatial frequency and contrast, has been studied [4, 5].
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However, few papers focus on controllable contrast en-
hancement methods in the context of visualization—our
viewing distance-based contrast enhancement method is
the first one to the best of our knowledge.

Our method is inspired by studies in human visual per-
ception. The basis of our method is a threshold model of
spatial vision, i.e., a model that predicts the visibility of
an object under different viewing conditions. The compu-
tation of contrast and contrast sensitivity functions (CSF)
is the core of such a model. It is believed that the hu-
man visual system contains visual pathways in a bandpass
fashion, and therefore, spatial vision can be appropriately
modeled by multiscale models [7, 8, 9]. A multiscale con-
trast model is proposed by Peli [10] to address the contrast
representation of a complex image. There, a bandpass im-
age pyramid is built using either cosine-log filters of various
scales or multiscale Gaussian filters. We adopt this con-
trast representation [10] and choose to use the cosine-log
pyramid as it provides more accurate spatial frequencies.

CSFs have been measured in physiological and psy-
chophysical experiments [7, 11, 12, 13]. These measure-
ments are successfully matched by computational models
of CSFs. In particular, a computational model for mul-
tiscale CSFs is proposed to predict visible differences be-
tween two images by Daly [14]. This comprehensive model
considers variables affecting the contrast sensitivity, in-

1



Author / 00 (2020) 1–12 2

(a) Original (b) Band Enhancement (c) Per-Pixel Enhancement (d)

Figure 1: Visualizations of the MRI brain dataset with an isoluminant color map (d): (a) original, (b) contrast-enhanced by our band-based
method, and (c) contrast-enhanced by the pixel-based method. Zoomed-in details can be seen in insets. Note that all figures in the paper
are supposed to be shown on the screen with the longer side of around 30 cm and viewed at around 80 cm away.

cluding the illumination level, image size, stimuli orien-
tation, and viewing distance. Our contrast enhancement
method combines the multiscale contrast model [10] with
the computational CSF [14]. A virtual viewing distance is
used as the single parameter to enhance contrast so that
all bandpass images become visible.

Two weight assignment approaches are supported in our
method: a band-based method that adjusts weights for
bandpass images globally; and a pixel-based method that
allows for setting weights for individual pixels of bandpass
images.

Mullen [13] studies visual sensitivity for sinusoidal grat-
ing patterns for monochromatic luminance gratings and
isoluminant chromatic gratings. The CSFs from exper-
iments show that better visual sensitivity is achieved
for chromatic channels for low spatial frequency stimuli,
whereas the luminance channel provides better sensitiv-
ity for stimuli with higher spatial frequency. Therefore,
we keep the chromatic channels for low spatial frequencies
and use the viewing distance-adjusted achromatic image to
provide more insights into higher spatial frequencies. An
example of the MRI brain dataset is shown as the orig-
inal (Figure 1(a)), enhanced by our band-based method
(Figure 1(b)), and enhanced by our pixel-based method
(Figure 1(c)). The enhanced results show details inside
the brain tissues that look washed away in the original
visualization.

The contribution of our work is an efficient image-based
technique that enhances contrast using a single parame-
ter of virtual viewing distance. The method is inspired
by the perception literature, and it goes beyond just com-
pensation for contrast loss caused by viewing distance but
allows for flexible overcompensation to emphasize relevant
features in the image.

One benefit of our approach is its generality: our method
can be used for a wide range of visualization examples,
ranging from volume visualization with transfer functions
all the way to 2D geographic information visualization,

as demonstrated in our examples. Another advantage
is the simplicity of the image-based post-processing that
does not interfere with previous steps in the visualiza-
tion pipeline and can be combined with any visualiza-
tion system. Through our efficient computational model,
the image enhancement works in interactive settings. Our
method comes with easy and intuitive controllability with
the virtual viewing distance as the only parameter.

2. Related Work

Utilizing color in computer-based visualization is an im-
portant research topic [6]. Luminance and spatial fre-
quency aspects in visualizations with color mapping are in
particular related to our work. Specifically, luminance is
more effective for revealing high-spatial-frequency struc-
tures than chromatic channels [4, 15]. The spatial fre-
quency of the data is considered an important factor in
color map design [5]. Color maps and high-frequency sinu-
soid gratings are combined to design better perceptually
uniform color maps that have good luminance contrast
across the whole range [16].

Luminance also plays an important role to improve de-
tails in natural image processing. Tone mapping opera-
tors [17, 18, 19] are concerned with the compression of
the luminance range while preserving perceived contrast.
Unlike our proposed method, these are image-processing
methods that target to reproduce the perceived image of
high dynamic range input on low dynamic range devices,
and cannot be tuned with a viewing distance.

Computational perception models exist, albeit outside
of the field of visualization. Daly [14] predicts the visible
differences between two images by devising a computa-
tional visual perception model. We make use of the CSF
of [14] for threshold contrast computation in our method.
The high dynamic range (HDR) visible difference predic-
tor (HDR VDP) [20] is a perceptual model that compares
a test high-dynamic-range image against a reference high
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Figure 2: The workflow of our contrast enhancement method based on virtual viewing distance.

dynamic range image and predicts the visibility, i.e., the
visible differences between these images, and quality—the
quality degradation with respect to the reference image.
However, these models focus on generating image metric
for natural-scened photos or synthesized images, whereas
our method perceptually enhances potentially abstract vi-
sualizations.

In the context of visualization, perceptual aspects have
been studied. The spectral visualization sharpening [21]
method is closely related to this work. That method [21]
also enhances the contrast of visualization images with
a viewing distance parameter but is based on a spectral
model of vision. This spectral model could simulate per-
ceptual effects due to the change of viewing distance and
contrast enhancement is achieved by inverting weights in
this model. Our paper is concerned with color percep-
tion in the context of its spatial embedding, and the pa-
per by Isenberg et al. [22] is also relevant to our work
but with a different goal in mind. Isenberg et al. study
the visibility of features of different spatial frequencies at
different viewing distances of a display wall. They pro-
pose a hybrid-image method that combines a near image
containing high-frequency information with a far image
that has low-frequency information to allow the user to
perceive coarse features well at distance and acquire fine
details when close to the display. We also analyze mul-
tiscale band-limited images, however, we utilize them to
compensate for perception distortions and design percep-
tually oriented color transformation. Moreover, rather
than a display-wall setting where the user moves back
and forth [22], we focus on a typical working space set-
ting where the user sits in front of a regular monitor at
more or less a fixed distance.

In regard to compensation for perception effects, there
are methods [23, 24] that compensate for the simultane-
ous contrast effect, which makes regions of the same color
look different. The compensation is realized by setting
these regions with different colors based on a customized
color appearance model. Unlike their work, our method
does not focus on the isolated simultaneous contrast effect

but how viewing distance affects the contrast on differ-
ent spatial scales. Furthermore, our method goes beyond
compensation but also supports overcompensation, which
is important for visualization.

Contrast enhancement or image sharpening is well stud-
ied in image processing [25]. An efficient and accurate im-
age sharpener is critical for high-quality image super reso-
lution technique [26] that generates high-resolution output
from a single low-resolution input image. However, these
techniques are not perceptually-driven and cannot be con-
trolled by the user.

Sufficient contrast is vital for gaining insights into the
underlying data in a visualization. In fact, user studies [27]
have shown that sharp boundaries created by binning con-
tinuous encodings help with the understanding of the data:
participants with binned encoding outperform those with
continuous encoding in terms of both the completion time
and accuracy. Therefore, it is natural to enhance contrast
for visualization images. Our method supports flexible in-
teractive overcompensation through a slider, allowing for
highlighting features of interest in visualization. It is im-
portant to note that such overcompensation is not arbi-
trary but perceptually-based in our method.

3. Contrast Enhancement Framework

The input of our method is a color image f(x, y). An
image pyramid containing band-limited images ai(x, y) is
extracted using cosine-log filters from the luminance im-
age fY (x, y) of f(x, y) . Then, contrast images ci of these
band-limited images are calculated, and band weights c̄i—
the averaged values of ci are also computed. Next, the
core step—viewing distance-based band weight assign-
ment, which is elaborated in Section 4—is achieved by
testing the contrast, i.e., c̄i for band-based method and ci
for pixel-based method, against a CSF S, which is com-
puted separately and independent of the dataset, for a
given virtual viewing distance set by the user. The lumi-
nance difference image fL(x, y) is then created by modu-
lating the band weights with ai(x, y). The final visualiza-
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Figure 3: Filter bank of 1-octave-wide cosine-log 1D filters in the
discrete spatial frequency domain. The dashed curve indicates the
sum of all filters.

tion fV (x, y) is created by combining the luminance dif-
ference image fL(x, y) and the chromatic part fC(x, y) of
f(x, y). The workflow of our method is illustrated in Fig-
ure 2. The remainder of this section explains each module
in our pipeline, and the two virtual viewing distance-based
weight assignment methods will be detailed in Section 4.

3.1. Image Pyramid Generation

A multiscale model of spatial vision uses an image pyra-
mid generated from the input image. An image f(x, y)
can be described in the frequency domain with polar co-
ordinates representation:

F (u, v) = F (r, θ) = L0(r, θ) +

l−1
∑

i=1

Ai(r, θ) +HBr, θ)

≈ L0(r, θ) +

l−1
∑

i=1

Ai(r, θ) , (1)

with r =
√

u2 + v2 , θ = arctan
( v

u

)

,

where u and v are the horizontal and vertical spatial fre-
quency coordinates in cycles/image [10] (the image is al-
ways zero-padded to be squared with the side of power of
2), r and θ are the polar spatial frequency coordinates, L0

and Hl are low and high pass residuals respectively, l is
the level of the pyramid, and Ai are band-limited images
in the frequency domain. An image can be approximated
without the high-frequency residual [10], we, therefore, dis-
card the high-frequency image. The band-limited images
are created by filtering F (r, θ) by multiplying a bandpass
filter Gi(r):

Ai(r, θ) = F (r, θ)Gi(r) . (2)

A popular choice of Gi is Gaussian filters with various
standard deviations. Gaussian filters are closely related
to scale space [28] and are widely used in imaging and
computer vision. The advantage is that they can be con-
veniently transformed between the spatial domain and fre-
quency domain. However, the Gaussian filters are asym-
metrical in the logarithmic frequency domain, and recon-
struction of the input image is nontrivial as filters do not
sum to one [10].

Figure 4: Cosine-log image pyramid of a visualization of the Hur-
ricane Isabel dataset. The input image is shown on the top row;
images in the pyramid are shown with increasing spatial frequency
from left to right, top to bottom (second and third rows). The band-
pass images are amplified for visualization purposes.

Instead, we adopt the cosine-log filter bank [10] for im-
age pyramid generation. A cosine-log filter of 1-octave
width, i.e., the central spatial frequency is twice the fre-
quency of the lower cutoff frequency and half of the higher
cutoff frequency, centered at frequency 2i cycles/image is
defined as:

Gi(r) = 0.5[1 + cos(π log2 r − πi)] . (3)

Figure 3 shows a 1D example of a cosine-log filter bank
comprised of 1-octave-wide cosine-log filters. The shapes
are symmetrical in the log spatial frequency axis and the
summation of filter responses equals to 1 as shown by the
red dash curve. In practice, these filters are defined in the
discrete frequency domain and the first few levels occupy
only a few pixels. The cosine functions are not accurately
represented there. As a result, we slightly change the filter
weights at these pixels to make sure that the summation
of all filters equals to one, as can be seen in Figure 3.

Bandpass images in the spatial domain ai(x, y) are ob-
tained by applying inverse Fourier transform to Ai(u, v).
Figure 4 shows an image pyramid of 8 levels of the Hur-
ricane Isabel data [29]. It can be seen that the cosine-log
filters capture features of different spatial frequencies in
the image.

3.2. Contrast Computation

The average contrast of each bandpass image ai(x, y) is
calculated and later tested against the threshold contrast
given by the CSF, which is discussed in the next section.
We follow the approach of Peli [10] to obtain contrast im-
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Figure 5: Daly CSFs [14] with various illumination levels.

ages ci(x, y) of each pyramid level:

ci(x, y) =
ai(x, y)

li(x, y)
,

li(x, y) = l0(x, y) +
i−1
∑

j=1

aj(x, y) , (4)

where l0(x, y) is the low pass residual image in the spa-
tial domain (L0(r, θ) in the polar coordinates frequency
domain), and li(x, y) is the low pass image before the i-th
level.

The per-pixel representation ci(x, y) is used as contrast
for our pixel-based method (Section 4.2) as in Peli’s ap-
proach [10], we further compute an average contrast c̄i for
level i for the band-based method (Section 4.1). There-
fore, we calculate the average band contrast c̄i for band
i:

c̄i =

∑

ci(x,y) 6=0

|ci(x, y)|

∑

ci(x,y) 6=0

1
. (5)

Note that other contrast definitions can also be used in
our framework.

3.3. CSF and Threshold Contrast

The Daly CSF [14] is a comprehensive computational
CSF model including many parameters: S(r, θ, L, i2, d, e),
where r is the radial spatial frequency in cycle/degree
(cpd), θ is the orientation, L is the illumination level, i2 is
the image size in degrees, d is the distance for lens accom-
modation, and e is eccentricity. Figure 5 shows Daly CSFs
with various illumination levels L; there, the shape of CSFs
varies significantly for different L: higher illumination lev-
els offer better contrast sensitivity; CSF changes from low-
pass to bandpass with increasing illumination level. We
choose L = 100 cdm−2, which is a typical light condi-
tion in an office setting, which is our target environment;
d = 0.7m is chosen as it is a typical viewing distance in
the office setting; e is set to 0 as we assume no eccentricity.
Parameters L and i2 are fixed for a given input image.

Given the CSF, the threshold contrast ct(r) is simply
the inverse of sensitivity S:

ct(r) =
1

S(r, θ, 100, i2, 0.7, 0)
. (6)

Note that the orientation θ plays a secondary role for band-
based weight assignment (Section 4.1), and, therefore, is
set to a constant (0); however, θ is important in pixel-
based weight assignment (Section 4.2)—it has to be set
based on the image gradient.

3.4. Virtual Viewing Distance-Based Weight Assignment

The perceptual spatial frequency rp(i) in cycles/degree
of bands are changed in our method through a virtual
viewing distance parameter dv. The cosine-log filter bank
gives spatial frequency rc(i) of each band in cycles/image,
and can be converted into the perceptual spatial frequency
using:

rp(i) = rc(i) · sdeg(I) , i = 0, 1, ..., l − 1 ,

sdeg(I) = 2 ·
180

π
arctan

(

0.5
scm(I)

dv

)

, (7)

where l is the number of layers of the image pyramid,
sdeg(I) and scm(I) are angle size in degree and physical
size in cm of the image I respectively. The physical size
scm(I) can be calculated given the pixel resolution of the
image, the pixel resolution, and physical size of the moni-
tor.

Figure 6: Average contrast of various viewing distance with threshold
contrast.

Figure 6 shows the average band contrast curves of an
image with different viewing distances (dashed curves) to-
gether with a threshold contrast curve generated by the
Daly CSF (the blue curve). It can be seen that with in-
creasing virtual viewing distance, the spatial frequency of
bands is increased. Our method allows for convenient spa-
tial frequency modification of band-limited images with a
single virtual viewing distance parameter. Based on this
observation, we propose two approaches for weight assign-
ment and explain them in detail in Section 4.
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3.5. Combining Image Channels

The luminance difference image fL(x, y) is generated as
the weighted sum of band-limited images:

fL(x, y) =

l−1
∑

i=1

wi · ai(x, y) . (8)

The final visualization fV (x, y) is created by combin-
ing fL(x, y) with the colored image fC(x, y). We re-
place the achromatic channel L(fC(x, y)) of fC(x, y) by
L(fC(x, y))+fL(x, y), and keep the chromatic channels of
fC(x, y) intact.
Care must be taken when band weights are high as the

modified achromatic image become saturated, i.e., fully
white or black. Since we would like to preserve the ap-
pearance of fC(x, y) as much as possible, we clamp the
achromatic channel L(fV (x, y)) empirically by ±20% of
the luminance of fC(x, y) to give an appropriate look of
the visualization:

L(fV (x, y)) :=min(max(L(fV (x, y)), 0.8L(fC(x, y))),

1.2L(fC(x, y))) .

In our current implementation, the combination operation
happens in the HSL color space, and the combined color
is transformed to the sRGB color space for display.

4. Weight Assignment Methods

Based on the threshold model of spatial vision, a thresh-
old contrast curve predicts the visibility of features of spe-
cific spatial frequency: a feature is not visible if its contrast
is below the curve, and it is visible if its contrast sits on or
above the curve. The goal of our virtual viewing distance-
based weight assignment is to amplify features so that they
become visible given their spatial frequencies set using the
virtual viewing distance.

4.1. Band-Based Weight Assignment

Band weight assignment is realized by comparing the av-
erage band contrast at virtual perceptual spatial frequen-
cies against the threshold contrast curve. The weight of a
band is set to 0, if the band contrast is above the curve;
otherwise, the weight is set to be the multiplier that “lifts”
the band contrast up to the threshold contrast:

wi =

{

ct(rp(i))/c̄i − 1 , ct(rp(i)) > c̄i

0 , ct(rp(i)) ≤ c̄i .
(9)

It can be seen in Figure 6 that with a short viewing dis-
tance, more bands of low spatial frequencies need to be
compensated and higher weights are required for shorter
viewing distance, e.g., dv = 0.2m; with a long viewing dis-
tance, more bands of high spatial frequencies need to be
compensated and higher weights are necessary for longer
viewing distance (dv = 2.2m); bands with medium spatial

frequency typically do not require compensation as thresh-
old contrast is very low for these frequencies, i.e., the con-
trast sensitivity is very high. These findings successfully
match our own experiences in daily life.

4.2. Pixel-Based Weight Assignment

The aforementioned band-based method uniformly am-
plifies whole bandpass images without the consideration of
contrast differences within each band. A shortcoming of
this global approach is that some features that are clearly
visible become over-exaggerated, whereas some other fea-
tures do not have enough weights to be seen clearly. There-
fore, we propose a pixel-based contrast enhancement ex-
tension to address this issue. The pixel-based contrast en-
hancement pipeline remains largely the same as the band-
based method except that the pixel-based method uses
contrast images rather than averaged band contrast, and
weights are set on a per-pixel basis as shown in Figure 2.
The workflow of the weight assignment of the pixel-based
contrast enhancement is illustrated in Figure 7. In the re-
mainder of this section, we explain each step in Figure 7
in detail.

Contrast 

Image

Contrast 

Transducer 

Function

Calculate 

Orientation

Daly CSF

Band WeightNo

Yes

Figure 7: The flowchart of pixel-based weight assignment (peak fre-
quency of ci(x, y) ≤ 32 cpd).

The effect of orientation (θ) cannot be ignored when
testing fine-grain stimuli, e.g., pixel-sized, with the Daly
CSF [14], and therefore, it is computationally expensive
as the CSF has to be computed for each pixel of each
band. In the perception simulation method [9], the con-
trast transducer functions are modeled to resemble CSF-
like behaviors and are used as a unified approximation to
threshold spatial vision and suprathreshold vision. There-
fore, we adopt the contrast transducer functions for the
achromatic channel from Pattanaik et al. [9] as we use the
luminance channel for contrast enhancement and compute
Equation 7 only when necessary. The contrast transducer
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Table 1: The exponent p for various peak spatial frequencies in Equa-
tion 10

Freq (cpd) 0.5 1.0 2.0 4.0 8.0 16.0 32.0

p 1.93 1.35 1.15 1.04 1.15 1.40 2.63

functions read:

T (c) =

{

22.4(c/0.536)0.5 , c ≥ 0.536 ,

22.4(c/0.536)p , otherwise ,
(10)

where c is the contrast, and the value of p depending on
the spatial frequency is summarized in Table 1. The values
of p for peak frequency of 0.5 through 16.0 cpd in Table 1
are adapted from Pattanaik et al. [9], while for 32 cpd,
the value of p is calculated by finding the threshold con-
trast ct(r) for r = 32 with the Daly CSF and then letting

T (ct(r)) = 1, i.e., p = log(1/22.4)
log(ct(32)/0.536)

. Linear interpo-

lation is used to calculate p if the peak frequency of the
band is between the values listed in Table 1.

Equation 10 provides a light-weight alternative to the
threshold contrast test—if T (c) < 1, the contrast of the
pixel is below the threshold and needs to be compensated;
otherwise, the contrast is above threshold and the pixel
could be seen, and we set the weight of the pixel to 0.
Then, the CSF is only computed in cases that a pixel needs
to be compensated, and the orientation of the feature can
be calculated using the gradient of the contrast image:

θ =arctan

(

dci(x, y)

dy
,
dci(x, y)

dx

)

.

We use the contrast transducer functions for spatial fre-
quencies up to 32 cpd as there is evidence that the maxi-
mum spatial frequency of a perceivable achromatic stimuli
is around 30 cpd due to limits of human visual acuity [9],
and in our case, we set the cutoff to 32 cpd to correspond
with the cosine-log filters. Note that the spatial frequency
can go beyond 32 cpd with our method as a long virtual
viewing distance can be set for overcompensation, and in
that case, the CSF has to be computed for each pixel of
bands that have spatial frequencies greater than 32 cpd.
The contrast of pixels of a band may vary significantly

and result in contrast-enhanced images with unnatural
look—some pixels may become too dark or bright. To
avoid such problems, we empirically clamp the weight of
a pixel by the smaller value of ct(rp(i), θ)/ci(x, y) − 1—
the multiplier that “lifts” the contrast of the pixel to the
threshold contrast, and ct(rp(i))/c̄i − 1—the average am-
plitude of the whole band. Therefore, the per-pixel weight
assignment mechanism can be described by:

wi(x, y) =

{

0, if T (ci(x, y)) ≥ 1 ,

min
(

ct(rp(i),θ)
ci(x,y)

,
ct(rp(i))

c̄i

)

− 1 , if T (ci(x, y)) < 1 .

(11)

The per-pixel compensated results can be found in Fig-
ures 1, 8, 9, and 10. In general, compared to the band-
based method, pixel-based contrast-enhanced images bet-
ter preserve features in the original images while generat-
ing less ringing artifacts.

5. User Interaction and Implementation

The virtual viewing distance visualization method has
only one parameter—the virtual viewing distance dv.
Therefore, user interaction is simple and intuitive with our
method as dv can be easily controlled by a single slider.

The method is implemented in our visualizationtool
written in C++ using Qt and OpenGL. Our tool supports
both 2D images and 3D volume datasets. The cosine-log
filter bank is computed only once for an image or a slice of
a volume dataset when its size was changed. Image pyra-
mid generation is computed using Fourier transform and
is aided by an efficient fast Fourier transform implementa-
tion in OpenCV. Contrast image generation is also aided
by OpenCV. The computation of these steps takes up to
a few seconds depending on the size of the image.

Interactivity is achieved with our implementation with
the help of GPU acceleration. For the band-based method,
the CSF is computed once and stored in a lookup ta-
ble, and weight assignment involves only a few lookups
and divisions. The resulting band weights are passed to
the GPU, and the luminance image was combined with
the color image in an OpenGL Shading Language (GLSL)
shader to give the final visualization. Whereas for the
pixel-based method, another GLSL shader calculates the
contrast transducer function for each pixel and combines
the per-pixel weighted luminance image with the color
image; this shader also computes the orientation of the
stimuli, and the CSF when the pixel’s contrast is consid-
ered below-threshold after the contrast transducer func-
tion test. Note that in the pixel-based mode, we use only
the top 5 high-frequency bandpass images to avoid arti-
facts caused by features of much lower frequencies that
pass the contrast transducer function test. A code snip-
pet of the GLSL shader is provided in the supplemental
material for reproducibility.

6. Examples

The usefulness of our perceptual enhancement is demon-
strated through various datasets of different types in this
section. Examples range from color mapping on 2D im-
ages (slices) to show scalar fields of atmosphere simula-
tion, brain MRI imaging, 3D volume rendered image, all
the way to 2D geographic information visualization on
maps. Insets of zoom-ins are provided in all exam-
ple figures for a clearer comparison between the original,
band-based contrast-enhanced, and pixel-based contrast-
enhanced images.
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(a) Original (b) Band Enhancement

(c) Per-Pixel Enhancement (d)

Figure 8: Visualizations of the Hurricane Isabel dataset [29]: (a) the original visualization based on a (d) spectrum color map, (b) overcom-
pensated with a viewing distance of 200 cm using the band-based method, and (c) contrast-enhanced by the pixel-based method.

6.1. Hurricane Isabel

The Hurricane Isabel simulation data is shown in Fig-
ure 8. Here, we see the pressure attribute of time step 29,
which well demonstrates the nature of atmosphere simu-
lations that have large-scale smooth, homogeneous struc-
tures with subtle yet important vortex details. With a
spectrum color map from ColorBrewer3, we are able to
roughly see the hurricane eye, the spiral arms, and the
shore area in the original color-mapped visualization. De-
tails of both the hurricane eye and spiral arm structures
can be better seen with a viewing distance of 200 cm with
the band-based method (Figure 8(b)). However, the
band-based contrast-enhanced image reduces the resolu-
tion of fine features in the data and gives a slightly blurry
look due to the ringing artifact. With our pixel-based
method (Figure 8(c)), the contrast of fine details through-
out the image is enhanced, yet the resolution of these fea-

3http://colorbrewer2.org

tures are better preserved compared to the band-based
method in Figure 8(b).

6.2. MRI Brain

Results of an MRI brain scan are shown in Figure 1. The
dataset is visualized with a slightly modified isoluminant
color map [32]. Without enhancement, the image gives
a washed away impression that the brain cannot be eas-
ily separated from the surrounding tissues (cyan), and the
delicate folded details are not recognizable without diffi-
culty. With a virtual viewing distance of 100 cm, the
brain structure with fine details become clearly noticeable
with the band-based weight assignment method, especially
for the cerebellum (Figure 1(b)). Applying the pixel-based
method to the data (Figure 1(c)), structure boundaries are
enhanced with finer curves, and the result looks more nat-
ural than the image enhanced with the band-based method
(Figure 1(b)).
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Figure 9: Volume renderings with ambient scattering of a supernova dataset are shown in the top row: ➞ IEEE. Reprinted, with permission,
from Ament et al. [30]. Phong-shaded volume renderings of a combustion simulation are shown in the bottom row: ➞ SCI institute.
Reprinted, with permission. The original images are shown in the left column, band-based enhancements are shown in the central column,
and pixel-based enhancements are shown in the right column.

6.3. Volume Rendered Images

Figure 9 (row 1) shows volume renderings of a super-
nova simulation using an ambient scattering model [30].
The perceptually enhanced result using the band-based
method (Figure 9(b)) provides a less blurry visualization
compared to the original rendering (Figure 9(a)). Specif-
ically, boundaries of complex vortex structures become
more prominent with the enhanced contrast, making it
easier to gain insights into these structures. The pixel-
based method (Figure 9(c)) gives a result where high-
frequency features are more subtly enhanced compared to
Figure 9(b).

Figure 9 (row 2) shows volume renderings with Phong
shading of a simulation of a heptane pool fire. With our
band-based method (Figure 9(e)), the contrast of bound-
aries of layers of the fire is enhanced providing better depth
cues than the original (Figure 9(d)). In comparison, the
pixel-based method generates a more subtly enhanced im-
age with less ringing artifacts (Figure 9(f)) than the band-
based method.

6.4. GIS Data

Figure 10 shows a visualization of movement behav-
ior [31] on a GIS city dataset. The visualization is designed
to achieve a focus-and-context effect: the focus is on dark
red road networks and the region inside the circle area,
other regions are given reduced contrast. The perceptu-
ally enhanced result (Figure 10(b)) improves the overall
contrast of the visualization while preserving the focus-
and-context feeling. Icons and structures inside the circle
of focus become more prominent. Details outside the focus
are enhanced so that more insights can be gained easily;
nevertheless, the enhancement is not too strong to distract
users from the focus region. However, ringing artifacts
can be seen in Figure 10(b), especially around the circle
of focus, and inside the icons. Figure 10(c) shows the re-
sult using the pixel-based method—the ringing artifacts
are reduced compared to Figure 10(b), while the contrast
of the whole image is enhanced compared to the original
(Figure 10(a)).

9
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(a) Original (b) Band Enhancement

(c) Per-Pixel Enhancement

Figure 10: Visualization of a GIS dataset: the original image (a) is contrast enhanced by the band-based method (b), and the pixel-based
method (c).➞ IEEE. Reprinted, with permission, from Krueger et al. [31].

7. Quantitative Evaluation

Our method is evaluated quantitatively using the
Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [33], where a lower score indicates better per-
ceived quality. The scores for the original image so, band-
enhanced image sbe, and per-pixel-enhanced image spe,
respectively, are summarized in Table 2. Furthermore, we
calculate the structural similarity index [34] comparing the
original image against the band-enhanced result ibe and
the per-pixel-enhanced result ipe. As shown in Table 2,

Table 2: Quantitative metrics of the original visualizations, enhance-
ments with band-based method, and enhancements with pixel-based
method.

Dataset so sbe spe ibe ipe

Supernova 46.6867 42.0056 39.7383 0.9748 0.9954
MRI 40.7385 43.4585 21.3608 0.9696 0.9982
Isabel 49.9857 42.8227 49.2977 0.9813 0.9913
HE 51.6422 49.3146 50.5710 0.9928 0.9977
GIS 35.0151 48.6560 44.4159 0.9313 0.9510

in general, the perceived quality of images is improved us-

ing our contrast enhancement method except for the GIS
dataset. The GIS dataset is very different from other
examples in nature and contains mostly high-frequency
features—it shows the limits of our method, which is best
used for color-mapped scientific visualizations; however,
the numbers are still comparable here. Higher values are
shown for ipe than ibe, indicating that the pixel-based
method yields images that look more similar to the original
than the band-based method—this is in line with our ob-
servation that the enhancements with the former are more
subtle than the latter.

Overall, the quantitative metrics is another indicator
showing the effectiveness of our method.

8. Conclusions and Future Work

In this paper, we have introduced a contrast enhance-
ment method based on virtual viewing distance for data
visualization with color images. The perceptually based
enhancement is achieved by adjusting bands that are ex-
tracted from the luminance channel of the input image
to become visible at a virtual viewing distance. Specifi-
cally, the method is built on a multiscale image pyramid
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created with cosine-log filters; weights of band-limited im-
ages are assigned by testing average band contrast against
a threshold contrast curve derived from a CSF. To re-
duce the potential ringing artifacts, we have further ex-
tended our method with an efficient pixel-based contrast
enhancement approach—there, the weight of each pixel in
each band-limited image is set using a hybrid method that
combines the CSF and contrast transducer functions. The
pixel-based method is recommended for high-quality ren-
derings with subtle enhancements, whereas the band-based
method is recommended for more controllability and dras-
tic effects. Our technique has only a single parameter—
virtual viewing distance that can be tuned easily by a
slider. Interactivity is achieved with our implementation.
The proposed method can be integrated into any visual-
ization pipeline as image post-processing. A wide range of
datasets that have representative image features is shown
as examples to demonstrate the usefulness of our method.
Our viewing distance visualization method is a potential
technique that benefits any visualization with effective per-
ceptual enhancement.

In the future, we would like to conduct quantitative
user studies to understand the optimal setting of vir-
tual viewing distance for different datasets. Furthermore,
the method could be extended to a VR/AR environment,
where the virtual viewing distance can be set using sensors
to achieve a more natural way of user interaction.
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