
Eur. Phys. J. Special Topics 227, 1741–1755 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2019-800158-6

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Review

Multivariate visualization of particle data

Liang Zhoua and Daniel Weiskopfb

Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany

Received 1 October 2018 / Revised in final form 2 December 2018
Published online 8 March 2019

Abstract. In this review paper, we review methods for interactive par-
ticle rendering techniques, multi-view particle visualization systems,
multivariate visualization techniques, and methods for correlation vi-
sualizations. Visualization is vital for gaining insight into particle data.
Multivariate particle data are generated to understand different as-
pects of the underlying physics. The visualization of multivariate
particle data is typically performed in multiple linked view systems
(multi-view systems) that render particles of interest that are selected
by the user interactively with brushing-and-linking. To this end, the
non-spatial aspects of particles are explored with multivariate visual-
ization methods, e.g., scatter plots, scatter plot matrix, parallel coor-
dinates, dimensional reduction and radial plots.

1 Introduction

Particle simulation is widely used in physical sciences, for example, in solid mechanics,
fluid dynamics, and astrophysics. Usage of particle simulation is found in molecular
dynamics that studies evolution of a discrete system. Systems described by par-
tial differential equations can also be studied using particle simulation: for example,
smoothed particle hydrodynamics (SPH) is a popular simulation approach in com-
putational fluid dynamics.

We abstract and formulate the visualization problem as follows. Each particle
has spatial and temporal information as well as physical attribute(s). We denote a
general particle as

Pi : (x, y, z, t, S1, S2, . . . , Sm) , (1)

where x, y, z are the spatial coordinates, t is time, and S1, S2, . . . , Sm are physical
attributes of this particle, for example, pressure, temperature, and speed, and m
denotes the number of attributes. This abstraction allows us to cover a wide range
of applications in particle-oriented simulations. With the advances in computational
and storage capacities of computers, the number of particles as well as their attributes
keep increasing, in order to provide more accurate descriptions of the physics.

Therefore, visualization has become increasingly important in the analysis of par-
ticle simulations – both for gaining insight into the simulation data to understand the
underlying physics and debugging the simulation algorithms and implementations.
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Fig. 1. Visual debugging system of SPH simulations [2]. The MegaMol-based system uses
multiple linked views with brushing-and-linking.

Visualizations of particle data are used in two major ways: visualizing the spatial-
temporal information of particles, i.e., x, y, z, t – the rendering of actual particles
in space and time, and showing the non-spatial multivariate attribute domain of
S1, S2, . . . , Sm. In practice, these two parts, namely, a particle renderer and mul-
tivariate visualizations, are linked and integrated into multiple linked view sys-
tems to allow for effective and flexible analysis of particle data. The idea behind
such systems is to perform closed-loop visual data analytics using brushing-and-
linking [1] as illustrated in Figure 1: the user explores and selects data points of
interest with brushing (selecting) in the multivariate attribute domain, and the par-
ticles of attribute values within the selection are rendered in the 3D view through
linking; then, the user visually inspects the rendering to make refinement on the
queries. Through this tight linking, we can build an overall mental model and under-
standing of the data. The loop ends whenever the user is satisfied with the refined
results.

In the remainder of this review paper, we first briefly report on popular particle
rendering techniques and multi-view visualizations for particle simulations (Sect. 2).
We then summarize representative multivariate visualizations in Section 3: scatter
plot matrix (SPLOM) – a direct extension of scatter plots, parallel coordinates, radial
plots, and dimension reduction approaches. Next, we review relevant multivariate
correlation visualizations (Sect. 4), followed by a discussion of aggregation methods
and frequency plots (Sect. 5).

2 Visualizing particle simulations

It is important to have efficient 3D rendering techniques that handle large-scale par-
ticle data and generate easy-to-perceive visualizations. Particle rendering techniques
concern the (x, y, z, t)-tuple of a particle as in equation (1). Furthermore, effective
and flexible methods that allow for interactive brushing-and-linking to explore and
visualize the particle data are fundamental for the understanding of particle sim-
ulations, i.e., the full description (x, y, z, t, S1, S2, . . . , Sm) of particles. This section
reviews relevant works in these two areas.
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2.1 Interactive particle rendering techniques

Particle data visualization is utilized in many physical sciences applications [3]. For
general-purpose particle rendering, GPU-based ray casting is a popular and very
fast method for directly rendering large amount of spheres [4] as well as complex
glyphs [5]. It is shown that interactive rendering can be achieved for multiple millions
of particles on a single GPU with ray casting. Based on the GPU-based rendering
technique, an open source particle rendering framework MegaMol [6] is implemented.
CPU-based ray casting can also achieve interactivity [7], and is advantageous for
larger datasets due to the larger memory a CPU can access than a GPU. For large
datasets, acceleration structures, for example, octree [8] and KD-tree [7] have been
exploited. For the topic of SPH simulations, a survey of high quality visualizations
can be found elsewhere [9].

Particle rendering techniques are not our focus in this review paper. For a more
comprehensive view of particle rendering techniques, we refer the reader to the arti-
cle of project D.3. Overall, interactive particle rendering techniques are an important
building block of full-fledged multivariate particle visualization methods using inter-
active brushing-and-linking. Such methods closely link a particle rendering view with
one or several complementary multivariate non-spatial visualization views to analyze
particle simulations.

2.2 Multi-view particle visualization

Brushing-and-linking [1,10] is an effective way to explore and visualize multivariate
datasets. It is common practice to use brushing-and-linking with multiple linked
views to visualize and analyze multivariate data having spatial information [11,12].
Multiple linked scatter plots in 2D and 3D are used to analyze computational fluid
simulations that are rendered with particles [13]. A multi-view application using
various types of plots, e.g., scatter plots and histograms, that are linked to a particle
renderer, has been used to analyze combustion simulations [14]. Parallel coordinates
plots are linked with a renderer that supports both particle and volume rendering to
facilitate visual analysis of large multi-dimensional simulations [15].

Figure 1 shows a visual debugging system for multivariate SPH simulations that
combines scatter plots, parallel coordinates, and a particle renderer [2]. The system
is based on the MegaMol framework [6], and is designed to aid the debugging of fluid
simulations for digital entertainment purposes, e.g., animations and movies.

A star coordinates plot (explained in Sect. 3.3) can be used for interactive selection
of particle clusters for surface reconstruction of SPH simulations [16]. Here, particles
are clustered automatically using their multidimensional attributes, and the results
are projected into the 3D star coordinates where the user has the flexibility to control
the projection to better examine and select clusters. Another method allows the user
to explore the multivariate SPH data with continuous star coordinates [17]. The data
are explored through interactive manipulation of the star coordinates and selected
particles are rendered in a spatial view. Details of continuous representations can be
found in Section 5.

In the next section, we review popular multivariate visualization techniques that
are commonly used as methods for visualizing the multivariate attribute domain in
multi-view particle visualizations.

3 Multivariate visualization techniques

Visualizing the non-spatial attribute domain, i.e., the (S1, S2, . . . , Sm)-tuple in equa-
tion (1), of particle simulations require appropriate multivariate visualization
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techniques. Direct visualization is feasible and effective for datasets with up to two
attributes by using 2D scatter plots. In a 2D scatter plot, a visual element (usually a
dot) is drawn for a data entry in the 2D image space, and its location is determined
by taking a first attribute and a second attribute as the horizontal and vertical coor-
dinates respectively. Afterward, the accumulated dots are usually mapped to colors
using color maps.

For three attributes, it is still possible by direct visualization with 3D scatter
plots, but the inherent occlusion problem in 3D makes it less effective. It is more
difficult if not impossible with scatter plots alone to visualize datasets with more
than three attributes. Therefore, variants and alternatives are needed. In the follow-
ing, we summarize representative and popular multivariate visualization techniques:
SPLOM, parallel coordinates, dimensionality reduction methods, and radial plots. A
broader introduction and taxonomy of multivariate visualization techniques can be
found elsewhere [18,19].

3.1 Scatter plot matrices

A SPLOM is a matrix consisting of individual 2D scatter plots as its elements. For
a number of m attributes: S1, S2, . . . , Sm of particles, a SPLOM is a m×m matrix,
where each of its non-diagonal element is a scatter plot as shown in Figure 2. For
each particle, it is mapped to a dot in each scatter plot in the SPLOM.

SPLOM inherits advantages of 2D scatter plots of direct visualization of a pair
of attributes, for example, SPLOM provides good support for cluster detection in
an attribute pair. However, SPLOM increases its number of cells quadratically for
increasing dimensionality, which results in two major issues.

First, a SPLOM has to be shown in a limited display area, and the dots could
become too small to be seen with increasing dimensionality of the SPLOM as they
become subpixel-sized. For example, the outlier in the zoomed-in inset in Figure 2
cannot be seen in the full-dimensional version. However, with excessive zooming-and-
panning, it breaks the mental picture of the visualization during analysis.

Second, it is difficult to trace data points of interest across attributes in a SPLOM.
Tracing requires a good amount of visual navigation and is further compounded by
the first issue if the dimensionality is high. To avoid breaking the flow of analysis,
Elmqvist et al. [20] propose an interactive exploration solution called ScatterDice.
There, the user performs structured navigation in the multidimensional space and
refines queries from different viewports.

3.2 Parallel coordinates

Parallel coordinates [21,22] are a popular visual mapping method for multivariate
data. Parallel coordinates show all attributes of multivariate data on parallel axes
where a data point is mapped to a polygonal line (polyline) across all axes. For
particle data with attributes S1, S2, . . . , Sm, each particle is mapped to a polyline
across all m axes. A survey of parallel coordinates can be found elsewhere [23].

Figure 3 illustrates the basic concept of parallel coordinates: a 2D point in a
scatter plot is mapped to a line (in practice, we often cull parts that are outside of
the attribute pair) in parallel coordinates by connecting locations on vertical axes of
attribute values of that data point, and a line in a scatter plot is mapped to a point
in parallel coordinates. This relationship is referred to as point-line duality [24].

Parallel coordinates can be easily extended to higher dimensions by adding more
axes and connecting the polylines. In this way, we can see patterns of multivariate
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Fig. 2. A SPLOM of a multivariate dataset of 11 attributes. An outlier in the “density
attribute” is highlighted in red in the zoom-in inset.

Fig. 3. The mapping of data points from a scatter plot (a) to parallel coordinates (b).
For each data point in scatter plot, a line is created in parallel coordinates by connecting
locations of corresponding attribute values on vertical axes; conversely, a line l in scatter
plot is mapped to a point l̄ in parallel coordinates.

relationships. For example, Figure 4 shows a simple example of a 6D dataset of
three entries. In fact, the scalability of dimensions is a great advantage of parallel
coordinates: with increasing number of data dimensions, we just need to add further
axes (which works fine up to limitations imposed by the display space).

Another advantage of parallel coordinates is the traceability of data across dimen-
sions. There is evidence that better performance is achieved with parallel coordi-
nates than with SPLOM for value-retrieval tasks [25], and a controlled eye-tracking
study [26] shows that parallel coordinates are better than SPLOM for value-estimation
tasks when the number of dimensions becomes higher (8 dimensions in that specific
case). For example, one can easily follow the outlier colored in blue in Figure 5 across
all dimensions, whereas it is very difficult if not impossible with the SPLOM as in
Figure 2.

A major issue of parallel coordinates is occlusion – polylines start to occlude
each other when data size increases – making it difficult for visualizing local fea-
tures and detecting clusters in pairs of attributes. In fact, scatter plots and SPLOMs
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Fig. 4. A parallel coordinates plot (left) of a simple 6D dataset (right).

Fig. 5. Parallel coordinates of the multivariate dataset used in Figure 2 with the same
outlier highlighted in blue.

complement parallel coordinates. Therefore, in practice, parallel coordinates are usu-
ally used in conjunction with scatter plots or SPLOMs with brushing-and-linking.

3.3 Radial plots

Multidimensional data S1, S2, . . . , Sm of particles can be visualized in plots with
radial layouts as well. The radar or spider chart arranges vertical axes in a parallel
coordinates plot in a circular layout with shared origin at the center with the polylines
drawn as polygons. Conversions between a parallel coordinates plot and a radar chart
allows for flexible linked-axes visualizations [27].

The star coordinates plot [28] uses circularly arranged attribute axes that share
the same origin at the center to represent basis vectors of an affine projection. The
projection matrix is changed via user interactions with the axes: the user can flexibly
modify the orientation and length of axes. However, this affine projection could lead
to strong distortions, and it could be laborious to find a good projection interactively.

Radviz [29] is another popular multidimensional circular plot. Unlike star coordi-
nate plot, Radviz does not define a transformation matrix but uses a spring tension
minimization algorithm to place data points. The attributes are defined as points
that are arranged equally over a unit circle. Each data point then connects to each of
the attribute points with a virtual spring whose stiffness is proportional to its value.
The final position of a data point, where the summed forces is equal to zero, is found
through minimization.

Aforementioned visualization techniques work well for multidimensional data,
however, for high-dimensional data, e.g., with hundreds or thousands of dimensions,
dimensional reduction and projection methods are necessary. The radial plots use
projections to 2D for visualizations.
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Fig. 6. Dimensional reduction methods on a high-dimensional dataset. The results are
color-coded by cluster ID, and the computational time of each method is labeled above the
figure. The scikit-learn package (http://scikit-learn.org/stable/) is used to generate
the results.

3.4 Dimension reduction methods

Dimensional reduction and projection are a popular method for multivariate data
visualization. These techniques result in 2D visualizations based on similarity of
samples in the multidimensional space. In general, these techniques can be classified
into two categories: linear and nonlinear methods. Linear methods use linear trans-
formations to project data from an m-dimensional space to a low-dimensional space,
e.g., 2D in most cases. Typical linear methods include Principal Component Analysis
(PCA), Multidimensional Scaling (MDS), and Linear Discriminant Analysis (LDA).
Linear methods usually have low computational and storage complexity, and are eas-
ier to interpret; however, such methods fail to preserve complex multidimensional
structures of the data.

In contrast, nonlinear methods could better preserve complex structures in the
multidimensional space. Representative nonlinear methods include: Isomap [30], local
linear embedding (LLE) [31], Laplacian Eigenmap (LE) [32], and t-Distributed
Stochastic Neighbor Embedding (tSNE) [33]. Notably, tSNE is particularly pop-
ular nowadays as it is advantageous in preserving multidimensional clusters that
have complex structures. Figure 6 shows typical dimensional reduction methods on a
64-dimensional dataset: Linear methods, PCA and LDA, are shown on the top row;
while nonlinear methods, Isomap and tSNE, are shown on the second row. With
cluster-based color coding, it can be seen that tSNE provides clearer cluster separa-
tion than other methods, while the computational times of linear methods are much
shorter.

Our review paper does not focus on dimensional reduction methods, which are an
important topic in statistics and data sciences. We refer the reader to [34] for details
of dimensional reduction techniques.

http://scikit-learn.org/stable/
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Aforementioned techniques visualize multivariate data as independent data items;
however, these techniques do not concern relationships between data items. Under-
standing such relationships, i.e., correlations, is an important aspect of multivariate
data visualization and analysis. In the next section, we review visualization methods
for correlations.

4 Visualization of correlation information

Correlation information is important for multivariate data analysis – in the case
of particle data, we are interested in the relationships between S1, S2, . . . , Sm of
particles. The global correlation of attributes provides overall similarity information
between these attributes. In contrast, local fitting, i.e., correlation and regression,
can be used to approximate complicated correlational relationships between data
attributes. Furthermore, global linear relationships can be approximated by local
linear relationships [35].

Dedicated correlation coordinate plots are proposed for correlation analysis of
multidimensional data [36]. The correlation coordinate plot combines scatter plots
and star plots to show the strength as well as the shape of global correlation of
transformed data points. This technique focuses on (many) pairwise correlations of
two attributes but also has some support to combine several pairs of attributes.

Alternatively, correlation information can be visualized directly in multivariate
visualization techniques that are covered in Section 3 for a more comprehensive, and
coherent understanding of the dataset without context switching. In the remainder
of this section, we focus on techniques that superimpose local fitting visualizations
with multivariate visualizations.

4.1 Visualizing correlations with scatter plots and SPLOMs

A dot-line representation with streamlines is used to visualize locally computed trend
lines in 2D scatter plots [37,38] for sensitivity analysis.

An example of a dot-line-based SPLOM visualization can be seen in Figure 7.
In Figure 7a, the flow-based scatter plot [37] draws trend lines estimated from the
local neighborhood of data points in the 2D space. Alternatively, a dot-line-based
SPLOM (Fig. 7b) can be used for correlation visualization; here, the trend lines
are orthogonally projected from local estimation calculated in the multidimensional
space into corresponding 2D subspaces.

Another technique uses illuminated 3D scatter plots to visualize local fitting infor-
mation [39]. The neighborhood of each data point is classified into linear, planar, or
volumetric structures by an eigen-analysis of the covariance matrix. Given the classi-
fication result, different illumination models are applied to improve shape perception.
Nevertheless, these methods are limited to show correlation information of 2 and 3
attributes, and do not scale to higher dimensions.

4.2 Correlation visualizations in parallel coordinates

Direct visualization of local fitting information is also made possible in parallel coor-
dinates [40]. Thanks to the asymmetric nature of positive and negative correlations
in parallel coordinates, positively correlated data points are transformed to fit into
the same display area of negatively correlated data. However, their method can visu-
alize local linear relationships limited to 2D, and the positive mapping violates the
point-line duality.



Particle Methods in Natural Science and Engineering 1749

Fig. 7. Correlation visualization with scatter plots: (a) a flow-based 2D scatter plot for
sensitivity analysis [38] (image courtesy of IEEE) and a dot-line SPLOM visualization of
local fittings of a combustion simulation data (b).

Fig. 8. Recursive construction of an indexed point in parallel coordinates (b) of a 2-flat
(plane) π in Cartesian coordinates (a). The first indexed point π̄123of 2-flats can be con-
structed from 1-flat indexed points as shown in (b).

Instead, we propose a method for visualizing local multivariate correlations in
parallel coordinates using indexed points of p-flats [41], which are generalized flat
surface of dimension p in high-dimensional space. An indexed point of a p-flat is the
point representation of the p-flat in the same 2D domain of parallel coordinates.

An example of the indexed point of 1-flat is shown in Figure 3 denoted as l̄.
Indexed points of higher order p-flats can be derived recursively from indexed points
of lower order p-flats. Figure 8 shows the recursive construction of an indexed point
π̄123 of 2-flat π (plane), from 1-flat indexed points.

In our method, the indexed points are used to represent linear fittings of the local
neighborhood of each data point directly on parallel coordinates. Specifically, local
lines and planes are estimated for 2D and 3D subspaces in the local neighborhood
of a point via principal component analysis. Then, we plot indexed points of 1- and
2-flats for local lines and planes respectively in parallel coordinates.

Our technique supports visualization of local multivariate correlations (of three
attributes or more) in parallel coordinates, which was previously impossible. In
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Fig. 9. Indexed point parallel coordinates of 1-flats of a combustion particle simulation.
The 1-flat indexed points of all dimensions are shown in (a), while (b) shows the indexed
point selection within the second parallel pair with a lasso. Highlighted samples are shown
in scatter plots in (c).

theory, an arbitrarily high order correlations can be supported in our technique, which
was also not possible in existing correlation visualization techniques as described in
Section 4. Another important benefit of our method is that it enables the visualization
of positive and negative correlations with clear visual patterns.

With the support of brushing-and-linking interactions, our method allows the
user to select regions of interest in data that was impossible with existing techniques.
We demonstrate the usefulness of our method with a particle-based combustion sim-
ulation data. Visualizations of 1-flat indexed points are shown in Figure 9.

Figure 10 shows 2-flat indexed points indicating planes in the dataset. Two major
parts are selected by the user within the subspace of last three attributes (b), showing
two surfaces joining together in the data domain as seen in the SPLOM (c).

Overall, our method gives a new prospective in multivariate data visualization
and analysis. It is a promising new technique that can be used as an add-on for
traditional parallel coordinates in multi-view particle visualization systems.

5 Aggregation methods for multivariate visualizations

In a typical simulation, a large amount of particles are used and above-mentioned
techniques are faced with scalability issues due to over-plotting. In fact, a rather small
amount of particles, e.g., several dozens of thousands, could cause severe over-plotting
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Fig. 10. Visualization of 2-flat indexed points of the combustion data: (a) shows indexed
points from all dimensions, (b) shows user selected samples of the subspace of last three
attributes, and (c) shows the SPLOM with selected samples which form two surfaces.

Fig. 11. Strategies for visualizing point-based and field-based, e.g., SPH, particle
simulations.

that makes those visualizations useless. Therefore, aggregation-based visualization
methods and frequency plots are proposed to address the scalability issue.

One solution is to aggregate data on the image plane (the upper path of Fig. 11).
Binning methods divide the multivariate data domain into intervals, i.e., bins, and
aggregate each data point into the bin it belongs to [42]. It is common practice to use
binning in scatter plots and SPLOMs, and the idea is extended for parallel coordinates
visualization [43] by applying the point-line duality (Sect. 3.2). Gaussian filtering can
be further applied to the binned data to create a density field. It is critical to choose
a suitable bin number for good visualzation that balances details of features and



1752 The European Physical Journal Special Topics

Fig. 12. Scatter plots of the “blunt-fin” simulation dataset. The traditional scatter plot
is shown to the left, whereas the continuous scatter plot [12] is shown to the right. Image
courtesy of IEEE.

performance. Alternatively, kernel density estimation, a nonparametric method, is
used to generate multivariate density field [42,44] on the image plane. Similar to the
problem of choosing an optimal number of bins, kernel density estimation is sensitive
to the choice of bandwidth.

Image-plane-based techniques work well for point-based particle simulations, how-
ever, artifacts are introduced when applying such techniques to field-based and multi-
scale simulations due to point sampling (the middle path in Fig. 11). Rigorous and
accurate methods that aggregate in the data domain are proposed for field data (the
bottom path in Fig. 11).

The continuous scatter plot [12] uses a generic and rigorous mathematical model
to map an arbitrary density defined on an n-dimensional input domain to an
m-dimensional scatter plot. An example of a 2D continuous scatter plot (Fig. 12(right))
of a “blunt-fin” fluid simulation reveals the multiple arc structures in the data and
the smooth density function in the scatter plot domain. In comparison, a traditional
scatter plot (Fig. 12(left)) does not show the arches nor the overall density distribu-
tion of the data well.

Likewise, a continuous density model can be applied to parallel coordinates [45].
Here, the continuous version of parallel coordinates is generated by transforming
density from the continuous scatter plot to the parallel coordinates using the point-
line duality. Figure 13 shows a comparison between traditional parallel coordinates
(left) and continuous parallel coordinates (right) generated from the same input data.
The continuous parallel coordinates provide an estimation of the density function of
the whole data domain, whereas the traditional parallel coordinates are only able to
show discrete data items in the input data.

The continuous representation is also proposed for star coordinates plots [17].
The method supports any sample arrangement using an isotropic density function
without the need of a grid or a mesh as in [12]. Notably, a multi-view system built
around an interactive continuous star coordinates widget is proposed for analyzing
multivariate SPH data, where the continuous star coordinates is consistent with the
kernel function of the simulation.

In-depth analysis of features in continuous visualizations is conducted [46,47].
Discontinuities in continuous scatter plots are studied and the continuous scatter plot
is extended by a discontinuity-based visualization approach [46]. Based on point-line
duality, features in continuous parallel coordinates [47].

The continuous representations can be combined with correlation information
visualization. With the p-flat indexed points [41], density fields can be estimated in a
similar fashion with either the structured [12] or the unstructured method [17]. This
way, a more comprehensive picture of the correlations can be drawn.
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Fig. 13. Parallel coordinates of the hurricane Isabel simulation. To the left, shows the
traditional parallel coordinates, while the continuous version is shown to the right. Image
courtesy of IEEE.

6 Conclusion

In conclusion, we have reviewed relevant techniques for multivariate particle visu-
alizations. Representative interactive particle rendering techniques and multi-view
visual analytics systems were summarized. Then, we reviewed the basics of com-
monly used multivariate visualizations: SPLOM, parallel coordinates, radial plots,
and dimensional reduction methods. Next, we discussed correlation visualization for
multivariate data including our method of indexed point parallel coordinates for
multivariate correlation visualizations. Finally, we covered relevant aggregation tech-
niques for point- and field-based particle simulations.

The spatial configuration of particle simulations can be effectively visualized with
interactive rendering techniques. The non-spatial, multivariate aspect of particle sim-
ulations are of equal importance as they could provide more insight into the simula-
tions. Multi-view visualizations that closely link the spatial rendering and non-spatial
multivariate techniques are fundamental for the understanding of the increasingly
more complicated particle simulations.

This work was supported by SFB 716 D.5. The following project-related research works
were published during the third funding period (2015–2018): [2,41,48,49].
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